Гост 24452-80 бетоны. методы определения призменной прочности, модуля упругости и коэффициента пуассона
Содержание:
- Способы выравнивания поверхности бетона
- Детальное определение
- От чего зависит величина?
- Что с этим делать
- Модуль деформации бетона
- Как установить столб под электричество на участке
- Расчет модуля упругости в лабораторных условиях
- Общее понятие
- Понятие модуля упругости бетона и единицы измерения
- Применение
- ПРИЛОЖЕНИЕ 3
- Модуль упругости бетона в20
- Что это такое
- Заключение
Способы выравнивания поверхности бетона
Выравнивается бетонная поверхность в основном с помощью шлифования, оштукатуривания и самовыравнивающихся стяжек.
В первом случае используют специальные шлифовальные машинки и болгарки со шлифовальными кругами (чашами). Если используют болгарки, то на них ставят шлифовальные диски (чаши) зернистостью 40 — 60, которыми обрабатывают поверхность. Если за один раз не удается получить требуемого результата, то процедуру повторяют. На финальном этапе бетон полируют шлифовальными дисками (чашами) зернистостью от 80, постепенно ее увеличивая. При этом можно использовать сухой или влажный способ обработки поверхности.
Важно! В процессе механической обработке выделяется пыль и могут отлетать небольшие частицы бетона, поэтому необходимо надевать рукавицы, респиратор и очки. Выравнивают стены и потолки также с помощью штукатурки
Используется цементная смесь с крупнозернистым или мелкозернистым песком. При этом для качественного сцепления штукатурки с поверхностью может использоваться металлическая проволочная сетка. Её крепят к поверхности чаще всего с помощью дюбелей. Точек крепления на 1 м2 должно быть не менее двадцати, так этот минимум прописан в СНиП
Выравнивают стены и потолки также с помощью штукатурки. Используется цементная смесь с крупнозернистым или мелкозернистым песком. При этом для качественного сцепления штукатурки с поверхностью может использоваться металлическая проволочная сетка. Её крепят к поверхности чаще всего с помощью дюбелей. Точек крепления на 1 м2 должно быть не менее двадцати, так этот минимум прописан в СНиП.
Полы же выравнивают самовыравнивающимися стяжками. Для этого на предварительно подготовленную (очищенную от пыли и грязи) поверхность наливают специальную самовыравнивающуюся смесь, которая полностью покрывает неровности и углубления. Классическим черновым вариантом является смесь на основе цемента, песка и других наполнителей.
Детальное определение
Приложим к однородному стержню растягивающие его силы. В результате воздействия таких сил стержень в общем случае окажется деформирован как в продольном, так и в поперечном направлениях.
Пусть l и d длина и поперечный размер образца до деформации, а l ′ > и d ′ > — длина и поперечный размер образца после деформации. Тогда продольным удлинением
называют величину, равную ( l ′ − l ) -l)> , а поперечнымсжатием — величину, равную − ( d ′ − d ) -d)> . Если ( l ′ − l ) -l)> обозначить как Δ l , а ( d ′ − d ) -d)> как Δ d , тоотносительное продольное удлинение будет равно величине Δ l l >> , аотносительное поперечное сжатие — величине − Δ d d >> . Тогда в принятых обозначениях коэффициент Пуассона μ имеет вид:
μ = − Δ d d l Δ l . >>.>
Обычно при приложении к стержню растягивающих усилий он удлиняется в продольном направлении и сокращается в поперечных направлениях. Таким образом, в подобных случаях выполнятся 0>»> Δ l l > 0 >>0> 0>»/> и Δ d d 0 > , так что коэффициент Пуассона положителен. Как показывает опыт, при сжатии коэффициент Пуассона имеет то же значение, что и при растяжении.
Для абсолютно хрупких материалов коэффициент Пуассона равен 0, для абсолютно несжимаемых — 0,5. Для большинства сталей этот коэффициент лежит в районе 0,3, для резины он равен приблизительно 0,5.
Существуют также материалы (преимущественно полимеры), у которых коэффициент Пуассона отрицателен, такие материалы называют ауксетиками. Это значит, что при приложении растягивающего усилия поперечное сечение тела увеличивается.
К примеру, бумага из одно
слойных нанотрубок имеет положительный коэффициент Пуассона, а по мере увеличения долимного слойных нанотрубок наблюдается резкий переход к отрицательному значению −0,20.
Отрицательным коэффициентом Пуассона обладают многие анизотропные кристаллы , так как коэффициент Пуассона для таких материалов зависит от угла ориентации кристаллической структуры относительно оси растяжения. Отрицательный коэффициент обнаруживается у таких материалов, как литий (минимальное значение равно −0,54), натрий (−0,44), калий (−0,42), кальций (−0,27), медь (−0,13) и других. 67 % кубических кристаллов из таблицы Менделеева имеют отрицательный коэффициент Пуассона.
От чего зависит величина?
На величину данного показателя значительно влияет наполнитель в материала. Упругость раствора зависит от множества факторов
Первое, на что обращают внимание — наполнитель. Коэффициент напрямую связан с упругостью раствора
Так, высокими показателями являются тяжелые бетоны, наполнителями в которых являются гравий и щебень
Допустимые нагрузки на постройки из такого материала самые высокие, поэтому важно выбирать правильные заполнители. Учитывают не только интенсивность нагрузок, но и частоту
Возраст и время укладки материала играют немаловажную роль в показателях модуля упругости. Крепость материала возрастает на протяжении 50 лет с момента заливки, вне зависимости от внешних температур (до 230 ⁰C). Кроме того, характеристики завися от процесса затвердевания (автоклавный, естественный). Чтобы узнать продолжительность предполагаемых нагрузок, нужно начальный показатель перемножать с показателем: 0,7 для поризованных бетонов, 0,85 — для тяжелых легких и мелкозернистых.
Возраст залитого материала находится в прямопропорциональной зависимости с данным показателем.
Классы бетонного раствора в частной стройке варьируют в пределах В7,5—30 (марки М100—400), но таких прочностных и других характеристик хватает вне зависимости от требований и сложностей конструкций. Показатели модуля увеличивает арматура, так как характеристики арматуры повышают показатели общей конструкции. Методика укладки арматуры в бетон определяется ГОСТом 24452—80.
Посмотреть «ГОСТ 24452-80» или
Что с этим делать
Итак, мы научились вычислять некий параметр, который влияет на скорость остывания массива на холоде. И как применить его в реальном строительстве?
Скорость нагрева и охлаждения
Поскольку обеспечить одновременный нагрев или охлаждение бетона по всему объему массива невозможно, любое изменение условий волей-неволей приведет к появлению дельты температур между ядром и поверхностью.
Увеличение перепада температур между ядром и поверхностью неизбежно приведет к росту внутренних напряжений в материале; поскольку речь идет о бетоне, не набравшем прочность, трещины не просто возможны — гарантированы.
Последствия быстрого охлаждения.
Выход? Он сводится к тому, чтобы максимально замедлить изменение температуры поверхности массива.
Модуль поверхности | Скорость изменения температуры |
Мп до 4 1/м | Не больше 5 градусов/час |
Мп лежит в диапазоне 5 — 10 1/м | Не больше 10 градусов/час |
Мп более 10 1/м | Не больше 15 градусов/час |
Стабильность температур при охлаждении обеспечивается, как правило, теплоизоляцией бетонного монолита; при нагреве — регулировкой мощности кабеля для бетона или тепловой пушки.
Выбор способа поддержания температуры
Это использование полученного значения модуля поверхности имеет прямое отношение к расчету скорости нагрева/охлаждения: на основе выполненного расчета выбирается способ стабилизации температуры до набора бетоном прочности.
Для модуля поверхности не выше 6 достаточно так называемого способа термоса. Форма просто-напросто качественно теплоизолируется, что существенно уменьшает теплоотдачу.
Для Мп в диапазоне 6 — 10 1/м возможно несколько решений:
Смесь разогревается перед укладкой в форму. В этом случае при должной теплоизоляции увеличивается период ее охлаждения до критической температуры (0 градусов); мало того — горячий бетон схватывается и набирает прочность гораздо быстрее.
Заливка горячим бетоном.
- В смесь вводятся добавки, ускоряющие ее затвердевание. Как вариант — применяются быстротвердеющие портландцементы высоких марок, которые, кроме ускоренного набора прочности, полезны тем, что в процессе гидратации выделяют больше тепла.
- Альтернативный подход сводится к понижению температуры кристаллизации воды в застывающей бетонной смеси. Благодаря соответствующим добавкам набор прочности продолжается при отрицательных температурах.
Наконец, для модуля поверхности свыше 10 единственное здравое решение — подогрев бетона греющим кабелем или тепловыми пушками до набора определенного процента проектной прочности. Значение минимальной прочности до заморозки зависит от класса бетона и области эксплуатации монолита; полная инструкция по подбору значений содержится в СНиП 3.03.01-87.
Конструкция подогревается до набора полной или частичной прочности.
Конструкция, класс бетона | Минимальная прочность |
Монолиты, предназначенные для эксплуатации внутри зданий; фундаменты под промышленное оборудование, не подвергающиеся ударным нагрузкам; подземные сооружения | 5 МПа |
Монолитные конструкции из бетона В7,5 — В10, эксплуатирующиеся на открытом воздухе | 50% марочной |
Монолитные конструкции из бетона В12,5 — В25, эксплуатирующиеся на открытом воздухе | 40% марочной |
Монолитные конструкции из бетона В30 и выше, эксплуатирующиеся на открытом воздухе | 30% марочной |
Преднапряженные конструкции (изготовленные на основе растянутого армирующего каркаса из упругих сталей) | 80% марочной |
Конструкции, нагружаемые сразу после прогрева полной проектной нагрузкой | 100% марочной |
Распалубка
После набора минимально необходимой прочности и стабилизации температуры монолита снимается опалубка и убирается теплоизоляция. Поскольку это происходит при отрицательных температурах, дельта между поверхностью бетона и окружающим воздухом тоже важна и тоже привязана к модулю поверхности.
С момента распалубки начинается стремительное охлаждение монолита.
- При Мп, лежащем в диапазоне 2-5, и коэффициенте армирования (отношении общего сечения арматуры к сечению монолита) до 1% максимально допустимая дельта температур составляет 20 С.
- При коэффициенте армирования от 1 до 3 процентов максимальная дельта температур — 30 градусов.
- При коэффициенте армирования свыше 3% воздух может быть на 40 градусов холоднее бетона.
- При модуле поверхности свыше 5 1/м максимально допустимые перепады температур для разных коэффициентов армирования принимают значения 30, 40 и 50 градусов соответственно.
Модуль деформации бетона
Устранение или ослабление вредного влияния температурных деформаций форм на трещиностойкость изделий должно учитываться на всех стадиях подготовки к выпуску изделий: при выборе технологической схемы производства, проектировании форм и назначении режимов тепловлажностной обработки бетона.
При выборе технологии изготовления должны обеспечиваться в максимально возможной степени модуль деформации бетона, взаимно свободные деформации изделия и формы. Для этого перед началом тепловой обработки предусматривается удаление штырей, фиксаторов, закладных элементов и т. п. При производстве изделий сложного очертания удаляются и отдельные бортовые элементы на участках переменного сечения. Полное освобождение граней изделия до пропаривания весьма эффективно, но при этом назначаются более мягкие режимы термообработки для уменьшения нарушений структуры бетона и его остаточного объемного расширения.
От состояния рабочих поверхностей формы и вида применяемой смазки зависит величина силы сцепления по контакту бетона с поверхностью формы. Отсутствие вмятин в обшивке поддона и бортов, хорошая очистка форм и использование высококачественной смазки или полимерных и эмалевых покрытий позволяют уменьшить силы сцепления изделия с формой и снизить появление трещин в период нагрева и остывания от опережающих деформаций форм.
Для повышения предельной растяжимости горячего бетона и предотвращения появления трещин при изготовлении плитных изделий на поддонах в период остывания рекомендуется применять разбрызгивание (дождевание) горячей воды на верхние поверхности плит в пропарочной камере перед ее открыванием. Повышенная влажность бетона способствует увеличению его трещиностойкости, растяжимости.
Особо неблагоприятные условия создаются при изготовлении изделий сложной конфигурации в обогреваемых формах, где наблюдаются температурные перепады, причины появления которых объясняются недостатками в схемах пароразводки и конструкции паровых рубашек:
— расчленение паровых рубашек ребрами жесткости на несколько подсекций; распределение пара перфорированными трубами, отверстия которых быстро засоряются;
Как установить столб под электричество на участке
Расчет модуля упругости в лабораторных условиях
Когда речь идет о модуле упругости, принимают во внимание оба его варианта – динамический и статический. У первого значение выше и определяется в ходе вибрации образца
Статический модуль, помимо основной информации, предоставляет данные о такой характеристике, как ползучесть бетона – динамика образования деформаций при постоянной нагрузке.
При расчетах учитывают тождество модулей упругости материала как на растяжение, так и на сжатие. Замечено, что если напряжение составляет 0,2 и более максимальной прочности бетона, происходят остаточные деформации. Это приводит к тому, что при сцеплении раствора и наполнителей возникают микротрещины, а это становится причиной крошения и в конечном итоге разрушения.
Во время эксперимента образец подвергают непрерывной нагрузке, имеющей тенденцию к возрастанию, до полного разрушения. Для этого используют особое оборудование – нагружающие установки. В диаграмму вносят данные, показывающие влияние нагрузок на степень деформаций. На завершающем этапе производится расчет среднего модуля упругости всех образцов.
- Строитель с 20-летним стажем
- Эксперт
В 1998 году окончил СПбГПУ, учился на кафедре гражданского строительства и прикладной экологии.
Занимается разработкой и внедрением мероприятий по предупреждению выпуска низкокачественной продукции.
Разрабатывает предложения по совершенствованию производства бетона и строительных растворов.
Общее понятие
Модуль упругости (также известный как модуль Юнга) – один из показателей механических свойств материала, который характеризует его сопротивляемость деформации растяжения. Другими словами, его значение показывает пластичность материала. Чем больше модуль упругости, тем менее будет растягиваться какой-либо стержень при прочих равных условиях (величина нагрузки, площадь сечения и прочее).
В теории упругости модуль Юнга обозначается буквой Е. Является составной частью закона Гука (закона о деформации упругих тел). Связывает напряжение, возникающее в материале, и его деформацию.
Согласно международной стандартной системе единиц измеряется в МПа. Но на практике инженеры предпочитают использовать размерность кгс/см2.
Определение модуля упругости осуществляется опытным путем в научных лабораториях. Суть данного способа заключается в разрыве на специальном оборудовании гантелеобразных образцов материала. Узнав напряжение и удлинение, при котором произошло разрушение образца, делят данные переменные друг на друга, тем самым получая модуль Юнга.
Отметим сразу, что таким методом определяются модули упругости пластичных материалов: сталь, медь и прочее. Хрупкие материалы – чугун, бетон – сжимают до появления трещин.
Дополнительные характеристики механических свойств
Модуль упругости дает возможность предугадать поведение материла только при работе на сжатие или растяжение. При наличии таких видов нагрузок как смятие, срез, изгиб и прочее потребуется введение дополнительных параметров:
- Жесткость есть произведение модуля упругости на площадь поперечного сечения профиля. По величине жесткости можно судить о пластичности уже не материала, а узла конструкции в целом. Измеряется в килограммах силы.
- Относительное продольное удлинение показывает отношение абсолютного удлинения образца к общей длине образца. Например, к стержню длиной 100 мм приложили определенную силу. Как результат, он уменьшился в размере на 5 мм. Деля его удлинение (5 мм) на первоначальную длину (100 мм) получаем относительное удлинение 0,05. Переменная является безразмерной величиной. В некоторых случаях для удобства восприятия переводится в проценты.
- Относительное поперечное удлинение рассчитывается аналогично вышепредставленному пункту, но вместо длины здесь рассматривается диаметр стержня. Опыты показывают, что для большинства материалов поперечное удлинение в 3-4 раза меньше, чем продольное.
- Коэффициент Пуансона есть отношение относительной продольной деформации к относительной поперечной деформации. Данный параметр позволяет полностью описать изменение формы под воздействием нагрузки.
- Модуль сдвига характеризует упругие свойства при воздействии на образец касательных напряжений, т. е. в случае, когда вектор силы направлен под 90 градусов к поверхности тела. Примерами таких нагрузок является работа заклепок на срез, гвоздей на смятие и прочее. По большому счету, модуль сдвига связан с таким понятием как вязкость материла.
- Модуль объемной упругости характеризуется изменением объема материала для равномерного разностороннего приложения нагрузки. Является отношением объемного давления к объемной деформации сжатия. Примером такой работы служит опущенный в воду образец, на который по всей его площади воздействует давление жидкости.
Помимо вышесказанного необходимо упомянуть, что некоторые типы материалов имеют различные механические свойства в зависимости от направления нагрузки. Такие материалы характеризуются как анизотропные. Яркими примерами служит древесина, слоистые пластмассы, некоторые виды камня, ткани и прочее.
У изотропных материалов механические свойства и упругая деформация одинаковы в любом направлении. К ним относят металлы (сталь, чугун, медь, алюминий и прочее), неслоистые пластмассы, естественные камни, бетон, каучук.
Понятие модуля упругости бетона и единицы измерения
В процессе эксплуатации твёрдые тела подвергаются нагружению и начинают деформироваться. Сначала протекающие деформационные изменения являются обратимыми, а их величина от прикладываемого усилия является линейной. Как только нагрузка снимается, изделие полностью восстанавливает первоначальную форму. Для описания протекающих процессов используется закон Гука, согласно которому в качестве коэффициента пропорциональности между абсолютным сжатием либо удлинением и прикладываемым усилием используется модуль упругости.
ФОТО: portbeton.ruМодуль упругости зависит от марки бетона ФОТО: konspekta.netМодуль выступает в качестве коэффициента пропорциональности
Определение данного показателя звучит следующим образом: модуль упругости – коэффициент пропорциональности между нормальным напряжением и соответствующей ему относительной продольной деформацией. Измеряется в кгс/см² (Н/м², Па). Называют модулем Юнга.
Как только нагрузка превысит определённый уровень, начинается фаза необратимых изменений. Деформативность становится неупругой. Сдвиг увеличивается без дальнейшего приложения нагрузки. В зоне ползучести внутренние связи начинают разрушаться, и бетонная конструкция теряет прочность.
ФОТО: gidrocor.ruПри превышении определённого значения бетонная конструкция начинает разрушаться
Применение
Марка бетона в25 не имеет особых технологий приготовления. Строительству монолитных конструкций служат следующие действия:
Кроме этого, материал применяют для заливки дорожных плит на площадках аэродромов
- нужно очистить поверхность от мусора и пыли;
- делается опалубка (используйте деревянные доски или ДСП);
- большую прочность получите, применяя перемычки и распорки;
- проведите армирование с помощью армированной сетки или стальных прутьев (эта процедура касается укрепления конструкции);
- равномерно залейте опалубку готовой смесью;
- применяйте вибраторы для уплотнения раствора;
- после застывания уберите съемную опалубку;
- первые десять дней смачивайте готовую конструкцию водой;
- полное застывание произойдет через 4 недели.
ПРИЛОЖЕНИЕ 3
Рекомендуемое
Камерная электрическая печь для проведения испытаний
образца-призмы (а) и образца-цилиндра (б) при нагреве
1 — металлический кожух; 2 — муфель из жаростойкого раствора с нагревателем
из проволоки повышенным омическим сопротивлением; 3 — теплоизоляция;
a — размер стороны призмы или диаметра цилиндра; H — высота образца.
Черт. 1
Схема испытания образца-призмы (а)
и образца-цилиндра (б) в нагретом состоянии
1 — опорный столик; 2 — съемная опорная плита столика с приваренным к ней оголовником; 3 — теплоизоляция из асбеста;
4 — электрическая печь; 5 — опорная плита; 6 — плита-вставка; 7 — образец; 8 — выносные удлинители; 9 — индикаторы;
10 — отверстия в съемной опорной плите для пропуска удлинителей; 11 — фиксатор для установки печи;
12 — теплоизоляция из ваты; 13 — термопара в рабочем пространстве печи.
Черт. 2
Выносные удлинители 8 пропускают через отверстия 10 в съемной плите опорного столика 2 и устанавливают образец 5, к которому крепят удлинители.
Для крепления удлинителей на гранях образца высверливают отверстия диаметром на 1-2 мм больше диаметра выносного удлинителя и глубиной 10-12 мм. В отверстия вставляют загнутые концы удлинителей и заделывают их жаростойким раствором на жидком стекле с кремнефтористым натрием и тонкомолотым шамотом.
При испытании образец 7 устанавливают центрально по разметке плиты пресса, опускают электрическую печь 4 на съемную плиту опорного столика 2, устанавливают термопару 13 в рабочее пространство печи. Рабочее пространство печи у торцов образца заполняют теплоизоляцией 12 из шлаковой, кварцевой или коалиновой ваты.
Закрепляют индикаторы 9 и проверяют их работоспособность.
Модуль упругости бетона в20
- Классификация
- Виды и таблицы
- Модуль упругости — от чего он зависит
- Заключение
Все растворы склонные к затвердеванию обладают определённой плотностью в застывшем состоянии, поэтому и существует такое понятие, как модуль упругости бетона, по которому и определяется его пригодность к тому или иному виду работ. Помимо этого такие смеси классифицируются еще и по маркам, но марка может включать размеров плотности и имеет более общее понятие.
Именно об этом пойдёт речь ниже, а также вы сможете увидеть здесь демонстрацию тематического видео в этой статье.
Испытание на растяжение
Виды и таблицы
Заливка плитного фундамента
- Все виды подобных растворов подразделяются на тяжёлые, мелкозернистые, лёгкие, поризованные, а также автоклавного твердения. Вызывает некоторое удивление, что чуть ли не все доморощенные строители об этом не имеют почти никаких знаний, хотя от этого в основном зависит качество возводимой конструкции.
- Сами по себе бетонные изделия являются достаточно твёрдыми материалами, но под воздействием механических нагрузок типа удара, сжатия растяжения и излома даже самый высокий модуль упругости железобетона не может быть вполне достаточным, как абсолютная единица. В связи с этим классификация прочности различается на два основных показателя — сжатие и растяжение, от которых зависит переносимость других нагрузок или упругость.
Наименование бетона | Модуль упругости начальный. Сжатие и растяжение Eb*103. Прочность на сжатие в МПа | ||||||||||||||||||
B1 | B1,5 | B2 | B2,5 | B3,5 | B5 | B7,5 | B10 | B12,5 | В15 | В20 | В25 | В30 | B35 | B40 | B45 | B50 | B55 | B60 | |
Тяжёлые | |||||||||||||||||||
Естественный цикл затвердевания | — | — | — | 9,5 | 13 | 16 | 18 | 21 | 23 | 27 | 30 | 32,5 | 34,5 | 36 | 37,5 | 39 | 39,5 | 40 | |
Тепловая обработка при атмосферном давлении | — | — | — | — | 8,5 | 11,5 | 14,5 | 16 | 19 | 20,5 | 24 | 27 | 29 | 31 | 32,5 | 34 | 35 | 35,5 | 36 |
Автоклавная обработка | — | — | — | — | 7 | 10 | 12 | 13,5 | 16 | 17 | 20 | 22,5 | 24,5 | 26 | 27 | 28 | 29 | 29,5 | 30 |
Мелкозернистые | |||||||||||||||||||
А-группа (естественное отвердение) | — | — | — | — | 7 | 10 | 13,5 | 15,5 | 17,5 | 19,5 | 22 | 24 | 26 | 27,5 | 28,5 | — | — | — | — |
Тепловая обработка при атмосферном давлении | — | — | — | — | 6,5 | 9 | 12,5 | 14 | 15,5 | 17 | 20 | 21,5 | 23 | 24 | 24,5 | — | — | — | — |
Б-группа (естественное отвердение) | — | — | — | — | 6,5 | 9 | 12,5 | 14 | 15,5 | 17 | 20 | 21,5 | 23 | — | — | — | — | — | — |
Теплообработка при автоклавном давлении | — | — | — | — | 5,5 | 8 | 11,5 | 13 | 14,5 | 15,5 | 17,5 | 19 | 20,5 | ||||||
В-группа автоклавного отвердения | — | — | — | — | — | — | — | — | — | 16,5 | 18 | 19,5 | 21 | 21 | 22 | 23 | 24 | 24,5 | 25 |
Лёгкие и горизонтальные — средняя плотность D | |||||||||||||||||||
800 | — | — | — | 4 | 4,5 | 5 | 5,5 | — | — | — | — | — | — | — | — | — | — | — | — |
1000 | — | — | — | 5 | 5,5 | 6,3 | 7,2 | 8 | 8,4 | — | — | — | — | — | — | — | — | — | — |
1200 | — | — | — | 6 | 6,7 | 7,6 | 8,7 | 9,5 | 10 | 10,5 | — | — | — | — | — | — | — | — | — |
1400 | — | — | — | 7 | 7,8 | 8,8 | 10 | 11 | 11,7 | 12,5 | 13,5 | 14,5 | 15,5 | — | — | — | — | — | — |
1600 | — | — | — | — | 9 | 10 | 11,5 | 12,5 | 13,2 | 14 | 15,5 | 16,5 | 17,5 | 18 | — | — | — | — | — |
1800 | — | — | — | — | — | 11,2 | 13 | 14 | 14,7 | 15,5 | 17 | 18,5 | 19,5 | 20,5 | 21 | — | — | — | — |
2000 | — | — | — | — | — | — | 14,5 | 16 | 17 | 18 | 19,5 | 21 | 22 | 23 | 23,5 | — | — | — | — |
Ячеистые, автоклавное твердение, плотность D | |||||||||||||||||||
500 | 1,1 | 1,4 | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — |
600 | 1,4 | 1,7 | 1,8 | 2,1 | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — |
700 | — | 1,9 | 2,2 | 2,5 | 2,9 | — | — | — | — | — | — | — | — | — | — | — | — | — | — |
800 | — | — | — | 2,9 | 3,4 | 4 | — | — | — | — | — | — | — | — | — | — | — | — | — |
900 | — | — | — | — | 3,8 | 4,5 | 5,5 | — | — | — | — | — | — | — | — | — | — | — | — |
1000 | — | — | — | — | — | 6 | 7 | — | — | — | — | — | — | — | — | — | — | — | — |
1100 | — | — | — | — | — | 6,8 | 7,9 | 8,3 | 8,6 | — | — | — | — | — | — | — | — | — | — |
1200 | — | — | — | — | — | — | 8,4 | 8,8 | 9,3 | — | — | — | — | — | — | — | — | — | — |
Таблица модулей упругости бетона с учётом СНИП 2.03.01-84
Примечание. Не забывайте о том, что при нагрузке конструкции не подвергаются необратимым процессам, вызывающим критические разрушения — их свойства не изменяются. Это следует учитывать при сооружении арок или перекрытий.
Рекомендация
При монтаже тех или иных конструкций всегда следует обращать внимание на таблицы, как того требует инструкция
Модуль упругости — от чего он зависит
Бетонные арки. Фото
В первую очередь, упругость зависит от характеристик наполнителя, к тому же, если отобразить такое влияние на графической схеме, то мы увидим прямолинейное возрастание.
Получается, что чем выше значение модуля, тем больше упругость раствора, где самые высокие показатели у тяжёлых бетонов, так как там используются очень плотные наполнители — щебень и гравий.
Также, на упругость влияет время заливки конструкции или её возраст, но показатели меняются в зависимости от первоначального модуля.
Но в среднем можно сказать, что бетон постоянно набирает крепость примерно в течение 50 лет! Примечательно, что все эти показатели не изменяются под воздействием температуры до 230⁰C, следовательно, вред бетону может быть нанесён только очень сильным пожаром.
Автоклавная обработка
Влияет на показатели процесс затвердевания раствора, который может происходить при термической обработке открытым способом, через автоклав или естественным образом.
Для определения продолжительности возможной нагрузки вы берёте начальный модуль (из таблицы) и умножаете его на коэффициент, который равен 0,85.
для лёгких, мелкозернистых и тяжёлых бетонов и 0,7 для поризованных.
Приготовление бетона своими руками при строительстве дома
Что это такое
Основной сезон ведения строительных работ — лето. В этот период погодные условия в максимальной степени располагают к заготовке растворов, установке опор, и т.д. Но поставленной цели не всегда удается добиться в срок, поэтому процесс возведения сооружений может затянуться до поздней осени или даже зимы.
Модуль поверхности бетона — это величина, выраженная через частное площади поверхности конструкции, имеющей контакт с воздухом, и объема смеси.
Определение
Площадь и объем смеси вычисляются с применением формул сферы:
- S = AB.
- S общ. = S1+S2+S3+S4+S5+S6.
- V = ABH.
Здесь приведены формулы для вычисления величин прямоугольного параллелепипеда, т.к. в большинстве случаев раствор закладывают в такую форму. Идеальный вариант с точки зрения времени остывания — сфера, но ее использование не оправдано другими обстоятельствами.
Единицы измерения, полученные в результате вычислений, представляют собой м-1 или 1/м. Происходит это по той причине, что площадь измеряется в м², а объем — в м³. Путем деления первого на второе получается, что единица измерения модуля поверхности бетона = м2/м3 = м2-3 = м-1 = 1/м.
В условиях реальности невозможно представить метр, выраженный в минус первой степени. Это значение изменяется в последующих вычислениях в более понятные единицы измерения согласно законами физики. Практического применения величина не имеет, но при ведении записей отчетов принято записывать все вычисления в полной форме.
Примеры расчета
Для лучшего понимания того, как работает формула модуля поверхности бетона, необходимо увидеть ее в действии. В качестве примера можно взять плитный фундамент с длиной 12 м, шириной 8 м и толщиной 20 см. Единицы измерения лучше сразу подогнать под один стандарт, превратив 20 см в 0,2 м.
Охлаждению подвержены в данной ситуации все поверхности фундамента кроме нижней, т.к. она соприкасается с основанием, обладающим достаточно высокой температурой для того, чтобы не брать эту сторону в расчет.
Вычисления бетонных элементов:
- Вычислить площадь каждой из сторон:
- 8х0,2х2 = 3,2;
- 12х0,2х2 = 4,8;
- 12х8 = 96;
- Найти сумму площадей: 96+3,2+4,8 = 104.
- Вычислить объем поверхности: 8х12х0,2 = 19,2.
- Вычислить значение модуля: 104/19,2 = 5,41(6).
Если речь идет о сложных элементах конструкции, то для вычисления значений их модулей существуют упрощенные формулы.
Некоторые из них представлены ниже:
- Прямоугольные блоки и колонны = 2/A + 2/B.
- Квадратные балки = 4/A.
- Куб = 6/A.
- Цилиндр = 2/R+2/H.