Сопротивление изоляции: методы измерения и нормы
Содержание:
- Проверка сопротивления изоляции кабеля мегаомметром
- Причины плохой изоляции кабеля
- Инструкция по эксплуатации
- Оценка результатов
- Определение электрического сопротивления для кабеля, провода и шнура
- Устройство и принцип работы мегаомметра
- Как проверить изоляцию кабеля мегаомметром
- Требования по безопасности
- Проверка работоспособности мегаомметра
- Опасность повышенного напряжения устройства
- Принцип измерения сопротивления изоляции мегаомметром.
- Пошаговая инструкция измерения сопротивления изоляции мегаомметром
- Измерение изоляции асинхронного двигателя мегаомметром
- Принцип измерения сопротивления изоляции мегомметром
Проверка сопротивления изоляции кабеля мегаомметром
Причины плохой изоляции кабеля
Есть несколько факторов влияющих на изоляционные свойства кабелей:
- атмосферные условия Зимой изоляция может внезапно улучшиться, т.к. имеющаяся внутри влага попросту превратится в лед.
- процесс укладки кабеля Неосторожные движения при монтаже могут вызвать излом или повредить оболочку.
- физический износ с течением времени
- воздействие агрессивной среды
- завышенное напряжение при эксплуатации
Для того чтобы вовремя выявить проблему с изоляцией, потребуется специальный прибор – мегаомметр. Данные приборы бывают старого образца (механические, где нужно вращать ручку):
и нового образца – электронные:
Рассмотрим работу этих устройств.
Инструкция по эксплуатации
Проверка сопротивления изоляции производится на обесточенном оборудовании или кабельной линии, электропроводке. Помните о том, что устройство генерирует высокое напряжение и при нарушении мер безопасности по использованию мегаомметра возможен электротравматизм, т.к. замер изоляции конденсатора или кабельной линии большой протяженности может стать причиной накопления опасного заряда. Поэтому испытание производится бригадой из двух человек, имеющих представление об опасности электрического тока и получивших допуск по ТБ. Во время испытания объекта, рядом не должны находиться посторонние лица. Помним про высокое напряжение.
Прибор при каждом использовании осматривается на целостность, на отсутствие сколов и поврежденной изоляции на измерительных щупах. Производится пробное тестирование путем испытания с разведенными щупами и замкнутыми. Если испытания производят механическим устройством, то нужно разместить его на горизонтальной ровной поверхности, чтобы не было погрешности в измерениях. При измерении сопротивления изоляции мегаомметром старого образца нужно вращать ручку генератора с постоянной частотой, примерно 120-140 оборотов в минуту.
Если измерять сопротивление относительно корпуса или земли, задействуют два щупа. Когда производят испытание жил кабеля относительно друг друга, нужно использовать клемму «Э» мегаомметра и экран кабеля чтобы компенсировать токи утечки.
Сопротивление изоляции не имеет постоянного значения и во многом зависит от внешних факторов, поэтому может варьировать во время измерения. Проверку производят минимум 60 секунд, начиная с 15 секунды фиксируют показания.
Для бытовых сетей испытания производятся напряжением 500 вольт. Промышленные сети и устройства испытываются напряжением в диапазоне 1000-2000 вольт. Каким именно пределом измерений пользоваться, нужно узнать в инструкции по эксплуатации. Минимально допустимое значение сопротивления для сетей до 1000 вольт — 0.5 МОм. Для промышленных устройств не меньше — 1МОм.
Что касается самой технологии измерения, использовать мегаомметр нужно по описанной ниже методике. Для примера мы взяли ситуацию с замером изоляции в ЩС (щит силовой). Итак, порядок действий следующий:
Выводим людей из проверяемой части электроустановки. Предупреждаем об опасности, вывешиваем предупредительные плакаты.
Снимаем напряжение, обесточиваем полностью щит, вводной кабель, принимаем меры от ошибочной подачи напряжения. Вывешиваем плакат — НЕ ВКЛЮЧАТЬ, РАБОТАЮТ ЛЮДИ.
Проверяем отсутствие напряжения. Предварительно заземлив выводы испытуемого объекта, устанавливаем измерительные щупы, как показано на схеме подключения мегаомметра, а также снимаем заземление. Данная процедура проводится при каждом новом замере, поскольку близлежащие элементы могут накапливать заряд, вносить погрешность в показания и представлять опасность для жизни. Установка и снятие щупов производится за изолированные ручки в резиновых перчатках
Обращаем ваше внимание на то, что изолирующий слой кабеля перед проверкой сопротивления нужно очистить от пыли и грязи.
Проверяем изоляцию вводного кабеля между фазами А-В, В-С, С-А, А-PEN, B-PEN, C-PEN. Результаты заносим в протокол измерений.
Отключаем все автоматы, УЗО, отключаем лампы и светильники освещения, отсоединяем нулевые провода от нулевой клеммы.
Производим замер каждой линии между фазой и N, фазой и PE, N и PE
Результаты вносим в протокол измерений.
В случае обнаружения дефекта разбираем измеряемую часть на составные элементы, ищем неисправность и устраняем.
По окончании испытания переносным заземлением снимаем остаточный заряд с объекта, путем кратковременного замыкания, и самого измерительного прибора, разряжая щупы между собой. Вот по такой инструкции необходимо пользоваться мегаомметром при замерах сопротивления изоляции кабельных и других линий. Чтобы вам было более понятна информация, ниже мы предоставили видео, в которых наглядно демонстрируется порядок измерений при работе с определенными моделями приборов.
Оценка результатов
Для небольших объектов за сопротивление изоляции считают данные, полученные через 15 секунд. Экраном не пользуются, так как емкость невелика (например, электродвигатель, который не подключен к длинному кабелю.) Коэффициент абсорбции также не измеряют. Во всех остальных случаях, и для кабельных линиях сопротивлением изоляции считают данные, полученные после 60 секунд. Индекс поляризации измеряют при комплексных испытаниях электроустановок.
Читателям этой статьи, скорее всего, придется измерять небольшие объекты, где измерение изоляции производится по упрощенному варианту. Мегаомметры дают возможность выбирать требуемые режимы измерений в своем меню, поскольку все измерительные процедуры более-менее стандартизованы. Несмотря на это, нельзя ни на секунду забывать о соблюдении мер безопасности, которые перечислены в статье!
Определение электрического сопротивления для кабеля, провода и шнура
Электрическое сопротивление жил кабелей, проводов и шнуров на 1 км длины, а также их сечение и количество проволок в жиле, регламентировано стандартом Гост 22483-77 и разделено на классы, причем к классам 1 и 2 относятся медные и алюминиевые жилы, предназначенные для кабелей и проводов стационарной прокладки. Жилы проводов и шнуров нестационарной прокладки и стационарной прокладки, требующей повышенной гибкости при монтаже, относятся к классам 3-6. По классам и будем делить таблицы сопротивления и прочих параметров шнура.
Таблица:
Жилы одножильных и многожильных кабелей и проводов
Таблица:
КЛАСС 2. Жилы одножильных и многожильных кабелей и проводов
Таблица:
КЛАСС 3. Жилы одножильных и многожильных кабелей и проводов
Таблица:
КЛАСС 4. Жилы одножильных и многожильных кабелей, проводов и шнуров
Таблица:
КЛАСС 5. Жилы одножильных и многожильных кабелей, проводов и шнуров
КЛАСС 6. Жилы одножильных и многожильных кабелей, проводов и шнуров
Таблица:
КЛАСС 6. Жилы одножильных и многожильных кабелей, проводов и шнуров
Таковы стандарты сопротивления, которым должны соответствовать современные кабели, провода и шнуры.
Что такое изоляция жил, проводящих ток
Изоляцией называют диэлектрическую оболочку жил проводов, кабелей и шнуров, а также самих шнуров и кабелей нанесенную с целью защиты жил от короткого замыкания, а окружающей среды от воздействия электрического тока. Изоляция бывает жильной (нанесенной непосредственно на жилы) и поясной (опоясывающей пучок жил в шнурах и кабелях).
Изоляция жил и обозначения
Помимо заводской изоляции (которой покрыты провода непосредственно во время их производства), существуют еще различные изоляционные ленты, кембрики, термоусадочные трубки и даже жидкая изоляция. Все они, как правило применяются для изолировки различного рода стыков (спайки, скрутки, гильзы), а также для восстановления поврежденной “родной” изоляции.
Устройство и принцип работы мегаомметра
Старение изоляции электропроводки, как и любой электрической цепи, невозможно определить мультиметром. Собственно, даже при номинальном напряжении 0,4 кВ на силовом кабеле, ток утечки через микротрещины в изоляционном слое будет не настолько большой, чтобы его можно было зафиксировать штатными средствами. Не говоря уже про измерения сопротивления неповрежденной изоляции жил кабеля.
В таких случаях применяют специальные приборы – мегаомметры, измеряющие сопротивления изоляции между обмотками двигателя, жилами кабеля, и т.д. Принцип работы заключается в том, что на объект подается определенный уровень напряжения и измеряется номинальный ток. На основании этих двух величин производится расчет сопротивления согласно закону Ома ( I = U/R и R=U/I ).
Характерно, что в мегаомметрах для тестирования используется постоянный ток. Это связано с емкостным сопротивлением измеряемых объектов, которое будет пропускать переменный ток и тем самым вносить неточности в измерения.
Конструктивно модели мегаомметров принято разделять на два вида:
- Аналоговые (электромеханические) — мегаомметры старого образца. Аналоговый мегаомметр
- Цифровые (электронные) – современные измерительные устройства. Электронный мегаомметр
Рассмотрим их особенности.
Электромеханический мегаомметр
Рассмотрим упрощенную электрическую схему мегаомметра и его основные элементы
Упрощенная схема электромеханического мегаомметра
Обозначения:
- Ручной генератор постоянного тока, в качестве такового используется динамо-машина. Как правило, для получения заданного напряжения скорость вращения рукояти ручного генератора должна бить около двух оборотов в течение секунды.
- Аналоговый амперметр.
- Шкала амперметра, отградуированная под показания сопротивления, измеряемого в килоомах (кОм) и мегаомах (МОм). В основу калибровки положен закон Ома.
- Сопротивления.
- Переключатель измерений кОм/Мом.
- Зажимы (выходные клеммы) для подключения измерительных проводов. Где «З» – земля, «Л» – линия, «Э» – экран. Последний используется, когда необходимо проверить сопротивление относительно экрана кабеля.
Основное преимущество такой конструкции заключается в его автономности, благодаря использованию динамо-машины прибор не нуждается во внутреннем или внешнем источнике питания. К сожалению, у такого конструктивного исполнения имеется много слабых мест, а именно:
Чтобы отобразить точные данные для аналоговых приборов важно минимизировать фактор механического воздействия, то есть мегаомметр должен оставаться неподвижным. А этого трудно добиться, вращая ручку генератора.
На отображаемые данные влияет равномерность вращения динамо-машины.
Часто в процессе измерения приходится задействовать усилия двух человек. Причем один из них выполняет сугубо физическую работу, — вращает ручку генератора.
Основной недостаток аналоговой шкалы – ее нелинейность, что также негативно отражается на погрешности измерений.
Причем один из них выполняет сугубо физическую работу, — вращает ручку генератора.
Основной недостаток аналоговой шкалы – ее нелинейность, что также негативно отражается на погрешности измерений.
Заметим, что в более поздних аналоговых мегаомметрах производители отказались от использования динамо-машины, заменив ее возможностью работы от встроенного или внешнего источника питания. Это позволило избавиться от характерных недостатков, помимо этого у таких устройств существенно увеличились функциональные возможности, в частности, расширился диапазон калибровки напряжения.
Современная аналоговая модель мегаомметра Ф4102
Что касается принципа работы, то он в аналоговых моделях остался неизменным и заключается в особой градации шкалы.
Электронный мегаомметр
Основное отличие цифровых мегаомметров заключается в применении современной микропроцессорной базы, что позволяет существенно расширить функциональность приборов. Для получения измерений достаточно задать исходные параметры, после чего выбрать режим диагностики. Результат будет выведен на информационное табло. Поскольку микропроцессор производит расчеты исходя из оперативных данных, то класс точности таких устройств существенно выше, чем у аналоговых мегаомметрах.
Отдельно следует упомянуть о компактности цифровых мегомметров и их многофункциональности, например, проверка устройств защитного отключения, замеры сопротивления заземления, петель фаза/ноль и т.д. Благодаря этому при помощи одного устройства можно провести комплексные испытания и все необходимые измерения.
Как проверить изоляцию кабеля мегаомметром
Требования по безопасности
Если речь идет о выполнении измерений с помощью мегаомметра на каком-либо предприятии, то его должен проводить обученный специалист с группой электробезопасности от 3 и выше
Даже при домашнем обследовании важно придерживаться основных правил и соблюдать требования по безопасности. Итак, согласно установленной инструкции, каждая работа с мегаомметром должна осуществляться с учетом следующих правил:
Работу нужно выполнять только в диэлектрических перчатках (к сожалению, большинство людей часто упускают это правило, но это ошибка).
Перед тем как начать работу, нужно подготовить линию и убедиться, что возле нее отсутствуют люди
На заводах и фабриках следует вывесить плакаты с предупреждением «не запускать», «осторожно, высокое напряжение» и так далее. При измерении длинной линии в домашних условиях можно придерживаться аналогичного принципа — желательно разместить на щитке вывеску об опасности
Также нужно ознакомиться с первыми действиями при получении удара электрическим током.
При работе щупы нужно держать в месте изоляции. Зачастую на рукоятке расположены упоры под пальцы, которые защищены от высоких напряжений.
После завершения расчетов нужно соединить щупы, перекрещивая их неизолированные участки. Таким образом можно снять остаточное напряжение. Отдельные электронные приборы поддерживают функцию автоматического разряда, когда остаточное напряжение осуществляется после каждого измерения. При отсутствии такой функции придется выполнить процедуру самостоятельно.
Проверка работоспособности мегаомметра
Даже если используемый мегаомметр прошёл испытания и поверку, необходимо произвести проверку его работоспособности непосредственно перед работами по замеру сопротивления изоляции. Для этого сначала подключаются соединительные провода к выходным клеммам. Затем эти провода закорачивают и проводят измерение.
При закороченных проводах значение сопротивления должно равняться нулю. Это будет видно на шкале или на дисплее, в зависимости от вида прибора. При закороченных соединительных проводах также проверяется целостность этих проводов.
Далее производится замер при раскороченных проводах. Если прибор исправен, то величина сопротивления изоляции в этом случае будет равняться «бесконечности» (если мегаомметр старого образца), или будет принимать пусть и большое, но фиксированное значение (если прибор электронный с цифровым дисплеем).
Опасность повышенного напряжения устройства
В работе с мегаомметром существуют специфические особенности, на которые следует обращать пристальное внимание. В первую очередь это связано с повышенным напряжением прибора
Встроенный генератор обладает выходной мощностью, достаточной не только для проверки изоляции, но и для получения серьезной электротравмы. Поэтому, в соответствии с правилами электробезопасности, использовать мегаомметр могут только подготовленные и обученные специалисты, не менее чем с 3-й группой допуска.
В процессе замеров повышенное напряжение охватывает проверяемый участок, а также клеммы и соединительные провода. Защита от этого обеспечивается щупами, имеющими усиленную изолированную поверхность. Они предназначены для установки на измерительные провода. Концы щупов ограничены запретной зоной с помощью предохранительных колец. Таким образом, предупреждается касание к ним открытых частей тела.
Для выполнения измерения на измерительных щупах предусмотрена специальная рабочая зона, за которую можно смело браться руками. Непосредственное подключение к схеме осуществляется зажимами «крокодил» с хорошей изоляцией. Запрещается использование других типов проводов и щупов. При выполнении измерительных работ, людей не должно быть на всем проверяемом участке. Данный вопрос особенно актуален в тех случаях, когда сопротивление изоляции измеряется в длинномерных кабелях, протяженностью до нескольких километров.
Принцип измерения сопротивления изоляции мегаомметром.
В основу работы прибора положен знаменитый закон Ома для участка цепи I=U/R. Для его воплощения внутри корпуса у любой модификации встроены:
- источник постоянного, откалиброванного напряжения
- измеритель тока
- выходные клеммы
Конструкция генератора напряжения может меняться в значительных пределах и создаваться на основе простых ручных динамо-машин, как в старых моделях, или за счет использования питания от встроенного либо внешнего источника. Выходная мощность генератора, как и величина его напряжения, может включать несколько диапазонов или выполнятся единственной, фиксированной величиной. На клеммы прибора подключаются соединительные провода, другой конец которых скоммутирован с измеряемой цепью. Для этих целей обычно используют зажимы типа «крокодил». Встроенный внутрь электрической схемы амперметр замеряет проходящий по цепи ток. С учетом того, что напряжение генератора уже известно и откалибровано, то шкала измерительной головки проградуирована сразу в пересчитанных единицах сопротивления — мегаомах или килоомах.
Так выглядит шкала старого, проверенного пятидесятилетним сроком эксплуатации аналогового прибора. Он позволяет выполнять замеры на двух пределах шкал:
Если мегаомметр создан по новым технологиям обработки цифровых сигналов, то на его дисплее тоже отображается сопротивление, но в более наглядном виде.
Пошаговая инструкция измерения сопротивления изоляции мегаомметром
Несмотря на то, что пользоваться мегаомметром несложно, при испытаниях электроустановок необходимо придерживаться правил и определенного алгоритма действий. Для поиска дефектов изоляции генерируется высокий уровень напряжения, которое может представлять опасность для жизни человека. Требования ТБ при проведении испытаний будут рассмотрены отдельно, а пока речь пойдет о подготовительном этапе.
Подготовка к испытаниям
Перед началом тестирования электрической цепи, необходимо обесточить ее и снять подключенную нагрузку. Например, при проверке изоляции домашней проводки в квартирном щитке необходимо отключить все АВ, УЗО и диффавтоматы. Штепсельные соединения следует разомкнуть, то есть отключить электроприборы от розеток. Если проводится испытания линий освещения, то из всех осветительных приборов следует удалить источники света (лампы).
Следующее действие подготовительного этапа – установка переносного заземления. С его помощью убираются остаточные заряды в тестируемой цепи. Организовать переносное заземление несложно, для этого нам понадобиться многожильный проводник (обязательно медный), сечение которого не менее 2,0 мм 2 . Оба конца провода освобождаются от изоляции, потом один из них подключают на шину заземления электрощитка, а второй крепится к изоляционной штанге, за неимением последней можно использовать сухую деревянную палку.
Медный провод должен быть прикреплен к палке таким образом, что бы им можно было прикоснуться к токоведущим линиям измеряемой цепи.
Подключение прибора к испытуемой линии
Аналоговые и цифровые мегаомметры комплектуются 3-мя щупами, два обычные, подключаемые к гнездам «З» и «Л», и один с двумя наконечниками, для контакта «Э». Он применяется при испытании экранированных кабельных линий, которые в быту, практически, не используются.
Для тестирования однофазной бытовой проводки производим подключение одинарных щупов к соответствующим гнездам («земля» и «линия»). В зависимости от режима испытания зажимы-крокодилы присоединяем к тестируемым проводам:
Каждый провод в кабеле тестируется относительно остальных жил, которые соединены вместе. Тестируемый провод подключается к гнезду «Л», остальные, соединенные вместе жилы к гнезду «З». Подобная схема подключения приведена на рисунке. Подключение мегаомметра
Если показатели отвечают норме, то на этом можно закончить испытания, в противном случае тестирование продолжается.
- Каждый из проводов проверяется относительно земли.
- Осуществляется проверка каждого провода относительно других жил.
Алгоритм испытаний
Рассмотрев все основные этапы можно перейти, непосредственно, к порядку действий:
- Подготовительный этап (полностью описан выше).
- Установка переносного заземления для снятия электрического заряда.
- На мегаомметре задается уровень напряжения, для бытовой проводки – 1000,0 вольт.
- В зависимости от ожидаемого результата выбирается диапазон измерения сопротивления.
- Проверка обесточенности тестируемого объекта, сделать это можно при помощи индикатора напряжения или мультиметра.
- Производится подключение специальных щупов-крокодилов измерительных проводов к линии.
- Отключение переносного заземления с тестируемого объекта.
- Осуществляется подача высокого напряжения. В электронных мегаомметрах для этого достаточно нажать кнопку «Тест», если используется аналоговый прибор, следует вращать ручку динамо-машинки с заданной скоростью.
- Считываем показания прибора. При необходимости данные заносятся в протокол измерений.
- Снимаем остаточное напряжение при помощи переносного заземления.
- Производим отключение измерительных щупов.
Чтобы измерить состояние других токоведущих проводников, описанная выше процедура повторяется, пока не будут проверены все элементы объекта, то есть речь идет об окончании замеров при испытании электрооборудования.
По итогам испытаний принимается решение о возможности эксплуатации электроустановки.
Измерение изоляции асинхронного двигателя мегаомметром
Перед измерениями отключают питание, снимают остаточное напряжение. Затем надо получить доступ к выводам обмоток. Один щуп прикрепляем к корпусу двигателя. Следите чтобы контакт был с чистым металлом — надо найти участок без краски и ржавчины. При проверке второй щуп подключаем к каждой из обмоток (также надо позаботиться чтобы под «крокодилом» было чисто.
Согласно таблице асинхронные двигатели, подключаемые к сети 220 В или 380 В, испытываются напряжением в 500 В.
Принцип измерения сопротивления изоляции мегомметром
Принцип измерения величины сопротивления изоляции сам по себе несложен. Используется закон Ома – замеряется сила протекающего между двумя щупами тока при известном поданном на них напряжении. Отношение величины напряжения к силе тока как раз и даст искомый результат. Этот принцип применяется практически во всех контрольно-измерительных приборах, предназначенных для измерения сопротивлений.
R = U/ I
Но для того чтобы вызвать и «засечь» электрический ток в цепи при очень больших показателях сопротивления (а у изоляции по умолчанию они должны быть такими), требуется подавать и весьма внушительное напряжение. Именно это и реализовано в мегомметрах.
Независимо от типа и модели прибора, он в обязательном порядке имеет:
- Высоковольтный источник постоянного напряжения.
- Измерительный блок, оценивающий силу проходящего по цепи электрического тока.
- Устройство индикации показаний – стрелочное со шкалами, или в виде цифрового дисплея с показом абсолютных значений.
- Набор измерительных проводов со щупами, посредством которых высокое напряжение передается на тестируемый объект.
На сегодняшний день существует два основных типа подобных приборов.
Еще не столь давно безраздельно господствовали мегомметры со стрелочной шкалой и встроенным индуктором – динамомашиной. Вращением специальной рукоятки генерируется высокое напряжение, которое после необходимого преобразования подаётся на щупы. Частота вращения – примерно 120÷140 оборотов в минуту (2 оборота в секунду). О выходе на установленное калиброванное высокое напряжение, как правило, извещает загоревшийся индикатор, расположенный на передней панели.
Подобные мегомметры без сколь-нибудь принципиальных изменений выпускаются уже много десятков лет. И, надо сказать, не торопятся «уходить со сцены».
Подобные модели довольно просты в устройстве, несложны в управлении. Как правило, имеют весьма солидные габариты и вес. Но зато – они полностью автономны, то есть не требуют ни элементов питания, ни подключения к сети
Идеальное решение для любых «полевых» условий, что бывает особенно важно во время ведения строительства
Как бы то ни было, мегомметры такого типа все еще выпускаются промышленностью, находят спрос. А многие мастера-электрики и вовсе предпочитают исключительно их, несмотря на появление более компактных и «навороченных» приборов.
Другой тип мегомметров – это электронные приборы, которые обычно намного компактнее и легче. Высокое напряжение у них вырабатывается в специальном электронном преобразователе от встроенного аккумулятора, сменных источников питания или от блока питания, требующего подключения к сети. Многие модели позволяют выбрать любой из этих вариантов питания. Но в любом случае прослеживается зависимость от наличия источника – полной автономности в работе нет.
Многие современные мегомметры внешне напоминают привычные мультитестеры. А нередко и способны выполнять ряд функций, им присущих.
Электронные приборы довольно компактны, и некоторые из них внешне даже вполне можно спутать с мультиметрами. Кстати, во многих моделях это сходство не ограничивается лишь внешним. Действительно, в них заложены некоторые функции «общего плана». Обычно это измерение постоянного и переменного напряжения, прозвон цепей и определение сопротивления в нижнем диапазоне значений, то есть от нуля до мегаома. Могут иметься и другие функции, в том числе и узкоспециализированного предназначения.
Проведение измерений – до предела упрощено. После выставления всех необходимых параметров и коммутации проводов мегомметра к проверяемому объекту, остается только нажать кнопку «TEST».
Индикация полученных показаний замеров выводится на цифровой дисплей, что, безусловно, значительно упрощает восприятие информации. Спустя несколько секунд после пуска, на дисплее появится измеренное значение сопротивления, с указанием соответствующей величины (МОм или ГОм, МΩ или GΩ).
Цифровые дисплеи намного удобнее для считывания измеренных значений сопротивления
Удобство в том, что и замеры, и считывание результатов никак не зависит от пространственного положения прибора. У стрелочных с этим сложнее – для корректных замеров требуется исключительно горизонтальное расположение.
Итак, независимо от типа мегомметра, принцип его работы един. На тестируемом объекте закрепляются щупы измерительных проводов, подключенных к прибору. Затем на них подается калиброванное высокое напряжение. Измеренное значение силы тока позволяет судить о сопротивлении между щупами. Значение выводится на устройство индикации.