Теплопроводность глины и песка

Содержание:

Механические способы

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше  (а лучше — хоть немного больше) рекомендованной для вашего региона.

Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

  В сухом состоянии При нормальной влажности При повышенной влажности
Войлок шерстяной 0,036-0,041 0,038-0,044 0,044-0,050
Каменная минеральная вата 25-50 кг/м3 0,036 0,042 0,,045
Каменная минеральная вата 40-60 кг/м3 0,035 0,041 0,044
Каменная минеральная вата 80-125 кг/м3 0,036 0,042 0,045
Каменная минеральная вата 140-175 кг/м3 0,037 0,043 0,0456
Каменная минеральная вата 180 кг/м3 0,038 0,045 0,048
Стекловата 15 кг/м3 0,046 0,049 0,055
Стекловата 17 кг/м3 0,044 0,047 0,053
Стекловата 20 кг/м3 0,04 0,043 0,048
Стекловата 30 кг/м3 0,04 0,042 0,046
Стекловата 35 кг/м3 0,039 0,041 0,046
Стекловата 45 кг/м3 0,039 0,041 0,045
Стекловата 60 кг/м3 0,038 0,040 0,045
Стекловата 75 кг/м3 0,04 0,042 0,047
Стекловата 85 кг/м3 0,044 0,046 0,050
Пенополистирол (пенопласт, ППС) 0,036-0,041 0,038-0,044 0,044-0,050
Экструдированный пенополистирол (ЭППС, XPS) 0,029 0,030 0,031
Пенобетон, газобетон на цементном растворе, 600 кг/м3 0,14 0,22 0,26
Пенобетон, газобетон на цементном растворе, 400 кг/м3 0,11 0,14 0,15
Пенобетон, газобетон на известковом растворе, 600 кг/м3 0,15 0,28 0,34
Пенобетон, газобетон на известковом растворе, 400 кг/м3 0,13 0,22 0,28
Пеностекло, крошка, 100 — 150 кг/м3 0,043-0,06    
Пеностекло, крошка, 151 — 200 кг/м3 0,06-0,063    
Пеностекло, крошка, 201 — 250 кг/м3 0,066-0,073    
Пеностекло, крошка, 251 — 400 кг/м3 0,085-0,1    
Пеноблок 100 — 120 кг/м3 0,043-0,045    
Пеноблок 121- 170 кг/м3 0,05-0,062    
Пеноблок 171 — 220 кг/м3 0,057-0,063    
Пеноблок 221 — 270 кг/м3 0,073    
Эковата 0,037-0,042    
Пенополиуретан (ППУ) 40 кг/м3 0,029 0,031 0,05
Пенополиуретан (ППУ) 60 кг/м3 0,035 0,036 0,041
Пенополиуретан (ППУ) 80 кг/м3 0,041 0,042 0,04
Пенополиэтилен сшитый 0,031-0,038    
Вакуум    
Воздух +27°C. 1 атм 0,026    
Ксенон 0,0057    
Аргон 0,0177    
Аэрогель (Aspen aerogels) 0,014-0,021    
Шлаковата 0,05    
Вермикулит 0,064-0,074    
Вспененный каучук 0,033    
Пробка листы 220 кг/м3 0,035    
Пробка листы 260 кг/м3 0,05    
Базальтовые маты, холсты 0,03-0,04    
Пакля 0,05    
Перлит, 200 кг/м3 0,05    
Перлит вспученный, 100 кг/м3 0,06    
Плиты льняные изоляционные, 250 кг/м3 0,054    
Полистиролбетон, 150-500 кг/м3 0,052-0,145    
Пробка гранулированная, 45 кг/м3 0,038    
Пробка минеральная на битумной основе, 270-350 кг/м3 0,076-0,096    
Пробковое покрытие для пола, 540 кг/м3 0,078    
Пробка техническая, 50 кг/м3 0,037    

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей

Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала

Какой коэффициент теплопроводности клееного бруса?

+7 +7

Главная » О домах » Коэффициент теплопроводности клееного бруса

Сегодня мы рассмотрим такие важные показатели клееного бруса, как прочность, долговечность, а также теплопроводность.

В общем, клееный брус – это весьма и весьма прочный материал. Сразу заметим, что этот показатель клееного бруса на 70% превосходит аналогичный – у обыкновенной древесины. Достигается столь высокая прочность описываемого материала за счет уплотнения древесины, которое происходит при сжатии, отсутствии трещин, применения клеев высокого качества, а также тщательнейшей просушки. При этом, нельзя не упомянуть, что современные технологии позволяют добиться не только высокой прочности самой клееной древесины, но и клея, который используется для ее производства.

Поскольку клееный брус применять стали лишь 20-25 лет назад, то точно сказать, сколько прослужит такой дом пока нельзя. Однако, между тем, совершенно очевидно, что аналогичные показатели домов, построенных из других материалов – хуже. Связано это с тем, что такие дома и рассчитываются предварительно на длительный срок службы, чему способствует то, что:

  • клееный брус прочнее древесины на 70%;
  • поскольку материал отлично просушен, его усадка равна лишь 1-2%;
  • в процессе эксплуатации клееный брус не лопается и не растрескивается;
  • клееный брус не подвержен гниению и плесени;
  • на клееный брус не оказывает воздействие влажность окружающей среды, а также ее температура;
  • отсутствует сезонная усадка, которая связана с набуханием древесины весной и летним усыханием.

Одной из важнейших характеристик строительных материалов является теплопроводность. В общем, это способность материала передавать тепло телам, которые менее нагреты и принимать его от более нагретых объектов. Чем ниже теплопроводность материала, тем лучше он сохраняет тепло. Кстати, коэффициент теплопроводности клееного бруса, один из самых низких, ведь он равен всего 0,1 Вт/м*С. Для примера приведем аналогичные показатель других материалов: сосна — 0,18, пенобетон — 0,37, и железобетон — 2,04 Вт/м*С.

Столь низким коэффициентом теплопроводности клееный брус может похвастаться за счет наличия нескольких факторов. Так, в первую очередь, основой клееного бруса выступает древесина, теплопроводность которой также низка. Во-вторых, значительному снижению данного показателя способствует то, что при производстве клееного бруса используется клей, который является прекрасным теплоизолятором.

Правила монтажа листов ГКЛ с утеплителем: уменьшаем теплопроводность

При монтаже гипсокартонных конструкций на профиль, между стеной, полом и потолком на металлокаркас клеят уплотнительную ленту из вспененных материалов. Она выполняет две основные функции: служит утеплителем между бетонными конструкциями и профилем, предотвращает возникновение дребезжания при вибрации металла.

Прежде чем монтировать каркас, нужно решить, какой вид утеплителя будет использован. От этого зависит толщина конструкции. Расстояние между листами должно соответствовать ширине утеплителя.

На наружных стенах необходимо после слоя утеплителя закрепить пароизоляцию (мелко перфорированную пленку). Она создаст влагонепроницаемый барьер, препятствующий проникновение конденсата в гипсокартон, а влажные потоки помещения будут впитываться в листы ГКЛ и удаляться через них.

Советуем посмотреть: как утеплить стену минватой.

Советы и рекомендации по выбору материалов

  1. Не ленитесь потратить время на изучение технической литературы по свойствам теплопроводности материалов. Этот шаг сведёт к минимуму финансовые и тепловые потери.
  2. Не игнорируйте особенности климата в вашем регионе. Информацию о ГОСТах по этому поводу можно с лёгкостью отыскать в интернете.
  3. Прежде, чем приступать к укладке утеплителя, убедитесь, что поверхность стены или перекрытия не имеет влаги. В противном случае через время между поверхностями образуется плесень.
  4. Если вы планируете монтировать невлагостойкий материал на внешней стене, позаботьтесь о тщательной обработке гидроизоляционным клеем.
  5. Не стоит производить внутреннее утепление поверхностей синтетическими материалами. Это негативно скажется на вашем здоровье.

Теплопроводность древесины и строительных материалов, строительных металлов, инея, льда и снега.

Теплопроводность древесины и строительных материалов, строительных металлов, инея, льда и снега.

Теплопроводность древесины (при -30/+40°C):

Теплопроводность древесины .

Береза 150
Дуб (поперек волокон) 200
Дуб (вдоль волокон) 400
Ель 110
Кедр 95
Клен 190
Лиственница 130
Липа 150
Пихта 150
Пробковое дерево 45
Сосна (поперек волокон) 150
Сосна (вдоль волокон) 400
Тополь 170

Коэффициенты теплопроводности строительных металлов (при -30/+40°C) . Теплопроводность строительных металлов.

Материал в 10 -3 Вт/(м·К) = в мВт/(м·К)
Сталь 52000
Медь 380000
Латунь 110000
Чугун 56000
Алюминий 230000
Дюралюминий 160000

Коэффициенты теплопроводности инея, льда и снега. Теплопроводность инея, льда и снега.

Материал в 10 -3 Вт/(м·К) = в мВт/(м·К)
Иней 470
Лед 0°С 2210
Лед -20°С 2440
Лед -60°С 2910
Снег 1500

Теплопроводность строительных материалов (при -30/+40°C): Теплопроводность строительных материалов.

Алебастр 270 — 470
Асбест волокнистый 160 — 240
Асбестовая ткань 120
Асбест (асбестовый шифер) 350
Асбестоцемент 1760
Асфальт в крышах 720
Асфальт в полах 800
Пенобетон 110 — 700
Бакелит 230
Бетон сплошной 1750
Бетон пористый 1400
Битум 470
Бумага 140
Железобетон 1700
Вата минеральная 40 — 55
Войлок строительный 44
Гипс строительный 350
Глинозем 2330
Гранит, базальт 3500
Грунт сухой глинистый 850 — 1700
Грунт сухой утрамбованный 1050
Грунт песчаный сухой =0% влаги / очень мокрый =20% влаги 1100 — 2100
Грунт сухой 400
Гудрон 300
Железобетон 1550
Известняк 1700
Камень 1400
Камышит 105
Картон плотный 230
Картон гофрированный 70
Кирпич красный 450 — 650
Кладка из красного кирпича на цементно-песчаном растворе 810
Кирпич силикатный 800
Кладка из силикатного кирпича на цементно-песчаном растворе 870
Кладка из силикатного одиннадцатипустотного кирпича 810
Кирпич шлаковый 580
Кладка из керамического пустотного кирпича (1300 кг/м3) 580
ПВХ поливинилхлорид — «сайдинг» 190
Пеностекло 75 — 110
Пергамин 170
Песчаник обожженный 1500
Песок обычный 930
Песок 0% влажности — очень сухой 330
Песок 10% влажности — мокрый 970
Песок 20% влажности — очень очень мокрый 1330
Плитка облицовочная 10500
Раствор цементный 470
Раствор цементно-песчаный 1200
Резина 150
Рубероид 170
Сланец 2100
Стекло 1150
Стекловата 52
Стекловолокно 40
Толь бумажный 230
Торфоплита 65 — 75
Фанера 150
Шлакобетон 700
Штукатурка сухая 210-790
Засыпка из гравия 360-930
Засыпка из золы 150
Засыпка из опилок 93
Засыпка из стружки 120
Засыпка из шлака 190 — 330
Цементные плиты, цемент 1920

Полки для ванных комнат: виды, материалы и стилевое оформление

Конструкционные материалы и их теплопроводность

Теплопроводность вещества зависит от его плотности. Чем больше плотность вещества, тем выше теплопроводность. С увеличением пористости понижается ее коэффициент.

Низкий коэффициент теплопроводности материала определяет его хорошие теплоизоляционные качества.

Бетон

  • Плотность: 500 кг/м³–2 500 кг/м³. Показатель зависит от состава смеси.
  • Теплопроводность: 1,28–1,51 Вт/м*К. Показатель меняется в зависимости от консистенции бетона.

Бетонная смесь используется для заливки монолитного фундамента, а бетонные блоки – для закладки фундамента и возведения стен.

Железобетон

  • Плотность: 2 500 кг/м3; бетонная смесь без вибрирования (применения глубинного вибратора) – 2 400 кг/м3.
  • Теплопроводность: 1,69 Вт/м*К.

Лёгкий бетон на пористых заполнителях называют ячеистым бетоном.

Используют в качестве конструкционного и теплоизоляционного материала. Самые распространённые строительные материалы из бетона на пористых заполнителях — газобетон, пенобетон, керамзитобетон.

Данные материалы применяются для возведения многоэтажных, частных домов и для дополнительных пристроек: бань, гаражей, сараев.

Керамзитобетон

Полнотелые керамзитобетонные блоки производятся с помощью вибропрессования. Не имеют пустот и отверстий. Часто используются для кладки несущих стен или закладки фундамента.

Пустотелые керамзитобетонные блоки делают с применением специальных форм, позволяющих при заливке смеси сформировать герметичные или сквозные пустоты.

Обладают меньшей прочностью по сравнению с полнотелыми керамзитобетонными блоками. Имеют меньшую теплопроводность, что делает их оптимальным материалом для возведения нетяжёлых конструкций с требуемой высокой теплоизоляцией.

  • Плотность: 500 кг/м³–1 800 кг/м³.
  • Теплопроводность: 0,14–0,66 Вт/м*К.

Газобетон

Изготавливается из газосиликата. С помощью специализированных газообразователей внутри блока формируют приблизительно сферические поры (пустоты), их диаметр 1–3 мм.

  • Плотность: 300–800 кг/м3. Зависит от количества и размера пустот.
  • Теплопроводность: 0,1–0,3 Вт/м*К.

Пенобетон

Изготавливается с применением пенообразующих добавок. Имеет пористую структуру.

  • Плотность: 600–1 000 кг/м3.
  • Теплопроводность: 0,1–0,38 Вт/м*К.

Изготавливается из глины и наполнителя.

  • Плотность: 500 кг/м³–1 900 кг/м³;
  • Теплопроводность: 0,1–0,4 Вт/м*К.

Керамический кирпич

Изготавливается из обожжённой глины.

  • Плотность: полнотелый – 1 600 кг/м³–1 900 кг/м³; пустотелый – 1 100 кг/м³–1 400 кг/м³;
  • Теплопроводность: полнотелый – 0,56–0,86 Вт/м*К; пустотелый–0,35–0,41 Вт/м*К.

Изготавливается из песка и извести.

  • Плотность: 1 100 кг/м³–1 900 кг/м³;
  • Теплопроводность: 0,81–0,87 Вт/м*К.

Дерево

  • Плотность: 150 кг/м³–2 100 кг/м³;
  • Теплопроводность: 0,2–0,23 Вт/м*К.

Строительные конструкционные материалы, даже с низкой теплопроводностью, нуждаются в дополнительном утеплении.

Или почитайте ЗДЕСЬ о несъемной опалубке из пенополистирола.

Какой песок лучше всего использовать для изготовления бетона?

Повсеместное использование песка в строительных работах позволяет расширить круг применения. Он является универсальным средством для приготовления различного вида раствора:

  • для бетонных смесей;
  • на стяжку полов;
  • декоративную штукатурку стен;
  • укладку стен блоками или кирпичом;
  • заливку несущих пли;
  • изготовление монолита.

Перечислять можно еще, главное понять суть. Но при возведении различного рода конструкций используется песок с различным составом и свойствами.

Уникальное свойство, перехода из рыхлого состояния в плотное. Позволяет использовать этот материал для защитной и естественной амортизации основы строения.

Если выделять производственную составляющую бетона, то здесь строительные организации да и частные строители отдают предпочтение именно речному песку. Его свойства позволяют начать использование без дополнительных манипуляций вроде промывки, как например карьерного.

Самым чистым среди добываемых песков является тот, который добывается со дна действующих рек. Он проходит дополнительный промывочную обработку и может сразу же использоваться по назначению. Однородная масса и отсутствие лишних примесей делают этот вид песка самым востребованным, несмотря на стоимость.

Бетон – особенный материал и требует точного расчета пропорций составляющих, а его качество зависит от наличия глинистых пород в песке. Ведь свойства глины в обволакивании песчинок добытого материала, что напрямую воздействует на качественное сцепление песка с другими составляющими бетонной смеси, в числе которых цемент.

По характеристикам песок еще делится на классы:

  • первый класс;
  • второй класс;
  • специальные пески.

Каждая из перечисленных групп используется для применения бетонных изделий, но только для узкого круга. Так, например, первый класс используется для отливки бетона, чьими основными характеристиками является:

  • качество;
  • высокая сопротивляемость к внешним воздействиям;
  • резкие перепады температуры, в числе которых морозостойкость.

Пески, относящиеся ко второму классу, применяются лишь для изготовления материалов, не требующих повышенной влагостойкости, например для плитки или облицовочных конструкций.

Специальные песчаные смеси необходимы при возведении бетонных или железобетонных конструкций. Подобные смеси позволяют усилить ряд показателей на сжатие и устойчивость к перепадам атмосферных сред.

Более подробно о свойствах и применении песка смотрите на видео:

Теплотехнический расчет стен из различных материалов

Среди многообразия материалов для строительства несущих стен порой стоит тяжелый выбор.

Сравнивая между собой различные варианты, одним из немаловажных критериев на который нужно обратить внимание является «теплота» материала. Способность материала не выпускать тепло наружу повлияет на комфорт в помещениях дома и на затраты на отопление. Второе становится особенно актуальным при отсутствии подведенного к дому газа

Второе становится особенно актуальным при отсутствии подведенного к дому газа

Способность материала не выпускать тепло наружу повлияет на комфорт в помещениях дома и на затраты на отопление. Второе становится особенно актуальным при отсутствии подведенного к дому газа.

Теплозащитные свойства строительных конструкций характеризует такой параметр, как сопротивление теплопередаче (Ro, м²·°C/Вт).

По существующим нормам (СП 50.13330.2012 Тепловая защита зданий.

Актуализированная редакция СНиП 23-02-2003), при строительстве в Самарской области, нормируемое значение сопротивления теплопередачи для наружных стен составляет Ro.норм = 3,19 м²·°C/Вт. Однако, при условии, что проектный удельный расход тепловой энергии на отопление здания ниже нормативного, допускается снижение величины сопротивления теплопередачи, но не менее допустимого значения Ro.тр =0,63·Ro.норм = 2,01 м²·°C/Вт.

В зависимости от используемого материала, для достижения нормативных значений, необходимо выбирать определенную толщину однослойной или конструкцию многослойной стены. Ниже представлены расчеты сопротивления теплопередаче наиболее популярных вариантов конструкций наружных стен.

Расчет необходимой толщины однослойной стены

В таблице ниже определена толщина однослойной наружной стены дома, удовлетворяющая требованиям норм по теплозащите.

Требуемая толщина стены определена при значении сопротивления теплопередачи равном базовому (3,19 м²·°C/Вт).

Допустимая — минимально допустимая толщина стены, при значении сопротивления теплопередачи равном допустимому (2,01 м²·°C/Вт).

№ п/п Материал стены Теплопроводность, Вт/м·°C Толщина стены, мм
Требуемая Допустимая
1 Газобетонный блок 0,14 444 270
2 Керамзитобетонный блок 0,55 1745 1062
3 Керамический блок 0,16 508 309
4 Керамический блок (тёплый) 0,12 381 232
5 Кирпич (силикатный) 0,70 2221 1352

Вывод: из наиболее популярных строительных материалов, однородная конструкция стены возможна только из газобетонных и керамических блоков. Стена толщиной более метра, из керамзитобетона или кирпча, не представляется реальной.

Расчет сопротивления теплопередачи стены

Ниже представлены значения сопротивления теплопередаче наиболее популярных вариантов конструкций наружных стен из газобетона, керамзитобетона, керамических блоков, кирпича, с отделкой штукатуркой и облицовочным кирпичом, утеплением и без. По цветной полосе можно сравнить между собой эти варианты. Полоса зеленого цвета означает, что стена соответствует нормативным требованиям по теплозащите, желтого — стена соответствует допустимым требованиям, красного — стена не соответствует требованиям

Стена из газобетонного блока

1 Газобетонный блок D600 (400 мм) 2,89 Вт/м·°C
2 Газобетонный блок D600 (300 мм) + утеплитель (100 мм) 4,59 Вт/м·°C
3 Газобетонный блок D600 (400 мм) + утеплитель (100 мм) 5,26 Вт/м·°C
4 Газобетонный блок D600 (300 мм) + вентилируемый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) 2,20 Вт/м·°C
5 Газобетонный блок D600 (400 мм) + вентилируемый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) 2,88 Вт/м·°C

Стена из керамзитобетонного блока

1 Керамзитобетонный блок (400 мм) + утеплитель (100 мм) 3,24 Вт/м·°C
2 Керамзитобетонный блок (400 мм) + замкнутый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) 1,38 Вт/м·°C
3 Керамзитобетонный блок (400 мм) + утеплитель (100 мм) + вентилируемый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) 3,21 Вт/м·°C

Стена из керамического блока

1 Керамический блок (510 мм) 3,20 Вт/м·°C
2 Керамический блок тёплый (380 мм) 3,18 Вт/м·°C
3 Керамический блок (510 мм) + утеплитель (100 мм) 4,81 Вт/м·°C
4 Керамический блок (380 мм) + замкнутый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) 2,62 Вт/м·°C

Стена из силикатного кирпича

1 Кирпич (380 мм) + утеплитель (100 мм) 3,07 Вт/м·°C
2 Кирпич (510 мм) + замкнутый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) 1,38 Вт/м·°C
3 Кирпич (380 мм) + утеплитель (100 мм) + вентилируемый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) 3,05 Вт/м·°C

Гипсокартон с минимальной теплопроводностью

Последнее время на рынке появился новый материал – “теплый гипсокартон”. Он выпускается нескольких видов. Утеплитель приклеивают к одному листу ГКЛ либо закреплен между двумя. Используется как для наружных, так и внутренних работ. Толщина плит с одним слоем достигает 60 мм, двухслойный до 100 мм, размер 1200 х 2500 мм. Основная сфера применения: быстровозводимые конструкции, летние дачные дома, подсобные помещения. Внутри зданий его приклеивают к стенам. В качестве утеплителя чаще используют полистирол, толщина слоя варьируется в зависимости от его ширины. Основным преимуществом материала является низкая теплопроводность и высокая скорость монтажа.

Таблица теплопроводности материалов на Д-И

Доломит плотный сухой 2800 1.7
Дуб вдоль волокон 700 0.23 2300
Дуб поперек волокон (ГОСТ 9462-71, ГОСТ 2695-83) 700 0.1 2300
Дюралюминий 2700…2800 120…170 920
Железо 7870 70…80 450
Железобетон 2500 1.7 840
Железобетон набивной 2400 1.55 840
Зола древесная 780 0.15 750
Золото 19320 318 129
Известняк (облицовка) 1400…2000 0.5…0.93 850…920
Изделия из вспученного перлита на битумном связующем (ГОСТ 16136-80) 300…400 0.067…0.11 1680
Изделия вулканитовые 350…400 0.12
Изделия диатомитовые 500…600 0.17…0.2
Изделия ньювелитовые 160…370 0.11
Изделия пенобетонные 400…500 0.19…0.22
Изделия перлитофосфогелевые 200…300 0.064…0.076
Изделия совелитовые 230…450 0.12…0.14
Иней 0.47
Ипорка (вспененная смола) 15 0.038

Что такое теплопроводность и для чего нужна

Процесс переноса энергии атомов и молекул от горячих предметов к изделиям с холодной температурой, осуществляется при хаотическом перемещении движущихся частиц. Такой обмен тепла зависит от агрегатного состояния металла, через который проходит передача. В зависимости от химического состава материала, теплопроводность будет иметь различные характеристики. Данный процесс называют теплопроводностью, он заключается в передаче атомами и молекулами кинетической энергии, определяющей нагрев металлического изделия при взаимодействии этих частиц, или передается от более теплой части – к той, которая меньше нагрета.

Способность передавать или сохранять тепловую энергию, позволяет использовать свойства металлов для достижения необходимых технических целей в работе различных узлов и агрегатов оборудования, используемого в народном хозяйстве. Примером такого применения может быть паяльник, нагревающийся в средней части и передающий тепло на край рабочего стержня, которым выполняют пайку необходимых элементов. Зная свойства теплопроводности, металлы применяют во всех отраслях промышленности, используя необходимый параметр по назначению.

Методы определения КТП

Существует 2 метода определения КТП:

  1. Стационарный – предполагает работу с параметрами, которые не будут изменяться в течение длительного времени или изменяющиеся незначительно. Преимущество этого метода в высокой точности вычисления результата. К недостаткам относится сложность регулировки эксперимента, большое количество используемых термопар, а также длительность затраченного времени на подготовку и проведение опыта. Этот метод подходит для вычисления КТП жидкостей и газов, если не учитывать передачу энергии конвекцией и излучением. 
  2. Нестационарный – визуально выглядит более простой и требует для выполнения от 10 до 30 минут. Нашла своё широкое применение из-за того, что в процессе исследования можно узнать не только КТП, но и температурную проводимость, а также теплоёмкость образца. 

Для проведения анализа теплопроводности строительных материалов применяются электронные приборы, например, ИТП-МГ4 «Зонд». Такие средства для вычисления КТП отличаются рабочим диапазоном температур, а также процентом погрешности.
 

Видео описание

Как выполняется вычисление КТП с помощью электронного прибора, смотрите в видео:

Таблица тепловой эффективности материалов

Большинство сырья, которое используется при строительстве, не нуждается в самостоятельном измерении КТП. Для этого существует таблица теплопроводности материалов, которая показывает основные характеристики, требуемые для расчёта тепловой эффективности. 

Материал Плотность, кг/м3 Теплопроводность, Вт/(м*градусы) ТеплоёмкостьДж/(кг*градусы)
Железобетон 2500 1,7 840
Бетон на гравии или щебне из природного камня 2400 1,51 840
Керамзитобетон лёгкий 500-1200 1,19-0,45 840
Кирпич строительный 800-1500 0,24-0,3 800
Силикатный кирпич 1000-2200 0,51-1,29 750-840
Железо 7870 70-80 450
Пенополистирол Пеноплэкс 110-140 0,042-0,05 1600
Плиты минераловатные 150-250 0,043-0,063

Большинство материалов отличается по своему составу. Например, теплопроводность кирпича зависит от того, из чего он сделан. Клинкерный имеет КТП от 0,8 до 1,6, а кремнезёмный 0,15. Также есть отличия по методу изготовления и стандартам ГОСТ. 

Пенополистирол разной толщиныИсточник cmp24.com.ua

Коротко о главном

Коэффициент теплопроводности – это скорость передачи тепла через материал в течение определённого времени.

Знание КТП нужно для улучшения тепловой эффективности конструкции. Например, если она должна быстро отдавать тепло, то её нужно делать из сырья с высокой передачей энергии, а для закрытых помещений наоборот нужны дополнительные утеплители. Это поможет сэкономить деньги на отоплении.

На теплопроводность материала влияет его плотность, влажность и волокнистость.
 

Синий + желтый

Сравнение теплоизоляционных бетонов между собой

А теперь давайте сравним при помощи таблицы основные технические характеристики вышеописанных теплоизоляционных видов бетона. А так же проанализируем: применение каких из них будет наиболее эффективно именно с целью теплоизоляции.

Наименование свойства Керамзитобетон Ячеистые бетоны Арболит Полистиролбетон
Теплопроводность, Вт*мС 0,14 0,08 0,07 0,05
Плотность, кг/м3 400 300-400 400 150-400
Стоимость изделий, ориентировочная рублей 3300 3200 3600 2700

Значения теплопроводности теплоблока и плит из теплого бетона варьируются в зависимости от производителей. А они, в основном, делают упор на обратную величину — сопротивление теплоотдаче, которая составляет для разных конструкций стен около 3,2м2 С/Вт.

Сравнение теплопроводности теплоизоляционных бетонов и других стеновых материалов

Комбинированная очистка

Современные системы глубокой очистки применяют комбинированные способы обработки сточных вод -механическое отстаивание, химические и биологические способы.

Принцип работы этих септиков следующий:

Устройство комбинированного септика.

  1. В первой камере стоки накапливаются и разделяются на легкие и тяжелые фракции.
  2. Вода очищается с помощью аэробных и анаэробных бактерий. Чтобы обеспечить эффективное использование аэробных бактерий, в установку необходимо включить специальные устройства – так называемые аэраторы. Эти устройства насыщают среду воздухом. Прежде чем сточные воды будут сброшены, они подвергаются обеззараживанию с помощью химических веществ.

Среди главных преимуществ биологических систем можно выделить следующие:

  1. Возможность установки канализации даже при высоком уровне грунтовых вод и на владениях с «тяжелыми» грунтами.
  2. Высокий уровень очистки сточных вод.
  3. Абсолютное отсутствие запахов при работе системы.
  4. Простота установки. Станции выпускаются уже готовыми к работе. На их установку понадобится не более 1-2 дней.
  5. Не нужно постоянно следить за работой септика. Это практически необслуживаемая система, которая способна отлично работать без вмешательства со стороны.
  6. Небольшие объемы нерастворимого осадка позволяют чистить систему достаточно редко – раз в 5-9 лет.

Главным недостатком этих установок является относительно высокая стоимость. Однако эти траты можно рассматривать как выгодную инвестицию, поскольку при эксплуатации канализации почти не возникает никаких дополнительных расходов.

Также к числу недостатков можно отнести необходимость подключения очистной станции к электропитанию. В тех регионах, где подача электричества нестабильна, такая установка не сможет работать.

Чем привлекательна низкая теплопроводность клееного бруса

Как известно, чем ниже значение теплопроводности*, тем лучше материал удерживает тепло.

Теплопроводность клееного бруса – важнейшая его характеристика. Коэффициент теплопроводности у клееного бруса самый низкий и составляет 0,1 Вт/м*С.

Чтобы было более понятно, сравним теплопроводность других материалов:

  • Железобетон имеет коэффициент теплопроводности 2,04 Вт/м.кв,
  • Пенобетон обладает теплопроводностью в размере 0,47 Вт/м.кв,
  • Пустотелый кирпич — 0,52 Вт/м.кв,
  • Профилированный брус обладает теплопроводностью 0,18 Вт/м.кв,
  • Клееный брус – 0,1 Вт/м.кв.

Такой низкий показатель теплопроводности у клееного бруса достигается за счет наличия нескольких факторов:

  1. Основа клееного бруса — древесина, которая сама по себе имеет низкую теплопроводность.
  2. При производстве клееного бруса используется клей, который в свою очередь является прекрасным теплоизолятором. Нашей компанией используется немецкий клей Akzo Nobel, который предназначен для склеивания древесины с древесиной. Он дает клеевые швы с очень высокими показателями прочности в различных условиях окружающей среды. Соединение обладает высокими показателями теплостойкости, стойкостью к действию растворителей и сопротивления ползучести при воздействии нагрузок.

На основании вышесказанного:

  1. Дома, построенные из клееного бруса, очень комфортные и практичные:
  • В зимний период на прогрев всего дома вы потратите минимально короткое время, а сохраните тепло на очень длительный период. Тем самым получите значительную экономию на отопление.
  • В летний период постоянной необходимости в кондиционировании дома не будет, т.к. прохлада в доме будет сохраняться довольно долго, в отличие от домов, построенных из других материалов. А это также экономия на содержании дома.

2. Стены дома можно делать значительно меньшей толщины, чем из других материалов. К примеру, теплопроводность бруса 150х150мм приблизительно такая же, как и бревна, имеющего диаметр в 240мм.

3. Нет необходимости в дополнительном утеплении стен.

Брус сечением 200 мм способен обеспечить комфортные условия даже в зимние морозы без дополнительного утепления.

Таким образом, клееный брус, благодаря низкой теплопроводности, является идеальным строительным материалом для возведения комфортного жилья, а также дает возможность дополнительной экономии на материале.

*Справка: Теплопроводностью называется количественная характеристика способности тела проводить тепло.

Структура, характеристики и состав гипсокартона

Название «гипсокартон» говорит само за себя: между слоями картона находится «начинка» из гипса. На первый взгляд простой состав обуславливает многочисленные положительные характеристики данного материала:

  • безопасность;
  • экологичность;
  • гладкость поверхности;
  • механическую прочность;
  • легкость в обработке;
  • невысокую цену;
  • огнестойкость;
  • высокие шумоизоляционные характеристики;
  • относительно небольшой вес листа гипсокартона.

В таблице 1 приведены характеристики листа гкл стандартного состава.

Таблица 1. Технические характеристики листа гипсокартона толщиной 12.5 и шириной 1200 мм

Масса, кг/м.кв Предел прочности при изгибе в продольном направлении, МПА Коэффициент теплопроводности, Вт/м К Предел прочности при изгибе в поперечном направлении, МПА
9.1 >6 0.15 >2.5

Кроме того, существуют определенные отличия в составе гкл разных типов. Утепленный лист с одной стороны имеет слой пенополистирола, который непосредственно влияет на теплопроводность гипсокартонной конструкции. Такой материал вообще не имеет картонного покрытия, что делает его стойким к воздействию влаги и открытого огня. Прекрасно «противостоит» пламени и огнестойкий гкл благодаря армирующим включениям из стекловолокна. Влагостойкий гипсокартон содержит специальные добавки против плесени, а также силикон. Листы обычно выполняют в отличной от других цветовой гамме – розовом или зеленом цвете.

Теплопроводность гипсокартона по видам

Кроме этого отдельно следует отменить, что листы гипсокартона в зависимости от их свойств могут обладать несколько различными коэффициентами теплопроводности. На сегодняшний день существуют следующие виды:

  • стандартный или обычный;
  • влагостойкий;
  • огнеупорный;
  • влагоогнеупорный.

Для каждого типа плит возможны небольшие вариации этого параметра, но в пределах установленных ГОСТом границ.

Также существуют специально утепленные плиты изделий. Такая плита имеет слой пенополистирола. Именно он влияет на показатель теплопроводности, уменьшая его, тем самым повышая общие теплоизоляционные свойства материала.

Особенностью такой плиты является полное отсутствие картонного слоя. В результате он становится полностью стойким к внешнему воздействию огня и повышенной влажности.

В заключение

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector