Теплопроводность металлов
Содержание:
- Модульбанк
- Видео-подборка по теме статьи
- Разъяснения показателей в таблице теплопроводности материалов и утеплителя: их классификация
- Перила для лестницы из металла: фото конструкций
- Применение
- Рейтинг лучших производителей диванов
- Чем привлекательна низкая теплопроводность клееного бруса
- Презентация на тему Что такое теплопроводность. ТЕПЛОПРОВОДНОСТЬ — перенос энергии от более нагретых участков тела к менее нагретым в результате теплового движения и взаимодействия. Транскрипт
- Какой коэффициент теплопроводности клееного бруса?
- ЗАПАСЫ И ДОБЫЧА
- описание различных пород, необходимость таблицы коэффициентов теплопроводности
- Синий + желтый
- Создание оптимального микроклимата
- Факторы, влияющие на теплопроводность
- Сравнительный анализ основных технических характеристик базальтовой ваты и пенополистирола
- Понятие «теплопроводность»
- Влияние концентрации углерода
- Заключение
Модульбанк
Видео-подборка по теме статьи
Разъяснения показателей в таблице теплопроводности материалов и утеплителя: их классификация
В зависимости от конструктивных особенностей конструкции, которую необходимо утеплить, подбирается вид утеплителя. Так, например, если стена возведена из красного кирпича в два ряда, то для полноценной изоляции подойдёт пенопласт в 5 см толщиной.
Благодаря широкому ассортименту плотности пенопластовых листов ими можно отлично произвести тепловую изоляцию стен из ОСБ и оштукатурить сверху, что также увеличит эффективность работы утеплителя. Классификация теплоизоляции
По способу передачи тепла теплоизоляционные материалы разделяются на два вида:
- Утеплитель который поглощает любое воздействие холода, жары, химического воздействия и т.д.;
- Утеплитель, умеющий отражать все виды воздействия на него;
По значению коэффициентов теплопроводности материала, из которого изготовлен утеплитель его различают по классам:
- А класс. Такой утеплитель имеет наименьшую тепловую проводимость, максимальное значение которой 0,06 Вт (м*С);
- Б класс. Обладает средним показателем СИ параметра и достигает 0,115 Вт (м*С);
- В класс. Наделён высокой теплопроводностью и демонстрирует показатель в 0,175 Вт (м*С);
Перила для лестницы из металла: фото конструкций
Применение
Агрегатное состояние материалов имеет отличительную структуру строения молекул и атомов. Именно это оказывает большое влияние на металлические изделия и их свойства, в зависимости от назначения.
Отличающийся химический состав узлов и деталей из железа, позволяет обладать различной теплопроводностью. Это связано со структурой таких металлов как чугун, сталь, медь и алюминий. Пористость чугунных изделий способствует медленному нагреванию, а плотность медной структуры – наоборот, ускоряет процесс теплоотдачи. Эти свойства используют для быстрого отвода тепла или постепенного нагревания продукции инертного назначения. Примером использования свойств металлических изделий является:
- кухонная посуда с различными свойствами;
- оборудование для пайки труб;
- утюги;
- подшипники качения и скольжения;
- сантехническое оборудование для подогрева воды;
- приборы отопления.
Медные трубки широко используют в радиаторах автомобильных систем охлаждения и кондиционеров, применяемых в быту. Чугунные батареи сохраняют тепло в квартире, даже при непостоянной подаче теплоносителя требуемой температуры. А радиаторы из алюминия, способствуют быстрой передаче тепла отапливаемому помещению.
При возникновении высокой температуры, в результате трения металлических поверхностей, также важно учитывать теплопроводность изделия. В любом редукторе или другом механическом оборудовании, способность отводить тепло, позволит деталям механизма сохранить прочность и не быть подвергнутыми разрушению, в процессе эксплуатации
Знание свойств теплопередачи различных материалов, позволит грамотно применить те или иные сплавы из цветных или черных металлов.
Рейтинг лучших производителей диванов
Номинация |
место |
фабрика |
рейтинг |
Лучшие фабрики недорогих диванов | 1 | 4.8 | |
2 | 4.7 | ||
3 | 4.6 | ||
4 | 4.5 | ||
Лучшие фабрики диванов в среднем и премиальном ценовых сегментах | 1 | 4.9 | |
2 | 4.9 | ||
3 | 4.8 | ||
4 | 4.7 | ||
5 | 4.7 | ||
6 | 4.6 |
Чем привлекательна низкая теплопроводность клееного бруса
Как известно, чем ниже значение теплопроводности*, тем лучше материал удерживает тепло.
Теплопроводность клееного бруса – важнейшая его характеристика. Коэффициент теплопроводности у клееного бруса самый низкий и составляет 0,1 Вт/м*С.
Чтобы было более понятно, сравним теплопроводность других материалов:
- Железобетон имеет коэффициент теплопроводности 2,04 Вт/м.кв,
- Пенобетон обладает теплопроводностью в размере 0,47 Вт/м.кв,
- Пустотелый кирпич — 0,52 Вт/м.кв,
- Профилированный брус обладает теплопроводностью 0,18 Вт/м.кв,
- Клееный брус – 0,1 Вт/м.кв.
Такой низкий показатель теплопроводности у клееного бруса достигается за счет наличия нескольких факторов:
- Основа клееного бруса — древесина, которая сама по себе имеет низкую теплопроводность.
- При производстве клееного бруса используется клей, который в свою очередь является прекрасным теплоизолятором. Нашей компанией используется немецкий клей Akzo Nobel, который предназначен для склеивания древесины с древесиной. Он дает клеевые швы с очень высокими показателями прочности в различных условиях окружающей среды. Соединение обладает высокими показателями теплостойкости, стойкостью к действию растворителей и сопротивления ползучести при воздействии нагрузок.
На основании вышесказанного:
- Дома, построенные из клееного бруса, очень комфортные и практичные:
- В зимний период на прогрев всего дома вы потратите минимально короткое время, а сохраните тепло на очень длительный период. Тем самым получите значительную экономию на отопление.
- В летний период постоянной необходимости в кондиционировании дома не будет, т.к. прохлада в доме будет сохраняться довольно долго, в отличие от домов, построенных из других материалов. А это также экономия на содержании дома.
2. Стены дома можно делать значительно меньшей толщины, чем из других материалов. К примеру, теплопроводность бруса 150х150мм приблизительно такая же, как и бревна, имеющего диаметр в 240мм.
3. Нет необходимости в дополнительном утеплении стен.
Брус сечением 200 мм способен обеспечить комфортные условия даже в зимние морозы без дополнительного утепления.
Таким образом, клееный брус, благодаря низкой теплопроводности, является идеальным строительным материалом для возведения комфортного жилья, а также дает возможность дополнительной экономии на материале.
*Справка: Теплопроводностью называется количественная характеристика способности тела проводить тепло.
Презентация на тему Что такое теплопроводность. ТЕПЛОПРОВОДНОСТЬ — перенос энергии от более нагретых участков тела к менее нагретым в результате теплового движения и взаимодействия. Транскрипт
1
Что такое теплопроводность?
2
ТЕПЛОПРОВОДНОСТЬ — перенос энергии от более нагретых участков тела к менее нагретым в результате теплового движения и взаимодействия микрочастиц (атомов, молекул, ионов и т.п.). Приводит к выравниванию температуры тела. Не сопровождается переносом вещества! Этот вид передачи внутренней энергии характерен как для твердых веществ, так и для жидкостей, газов. Теплопроводность различных веществ разная. Существует зависимость теплопроводности от плотности вещества.
3
Процесс передачи теплоты от более нагретых тел менее нагретым называется теплопередачей.
4
Попробуем опустить в горячую воду, налитую в небольшой сосуд, кусочек льда. Через некоторое время температура льда начнет повышаться и он растает, а температура окружающей воды понизится. Если опустить горячую ложку в холодную воду, то окажется, что температура ложки начнет понижаться, температура воды повышаться и через некоторое время температура воды и ложки станет одинаковой А теперь опустим в горячую воду деревянную палочку. Можно сразу заметить, что деревянная палочка нагревается значительно медленнее металлической ложки.Отсюда можно сделать вывод, что тела, сделанные из разных веществ, обладают разной теплопроводностью.
5
Теплопроводность различных веществ разная. Металлы обладают самой высокой теплопроводностью, причем у разных металлов теплопроводность отличается. Жидкости обладают меньшей теплопроводностью, чем твердые тела, а газы меньшей, чем жидкости. При нагревании верхнего конца закрытой пальцем пробирки с воздухом внутри можно не бояться обжечь палец, т.к. теплопроводность газов очень низкая.
6
Вещества с низкой теплопроводностью используют в качестве теплоизоляторов. Теплоизоляторы это вещества, плохо проводящие тепло. Воздух является хорошим теплоизолятором, поэтому оконные рамы делают с двойными стеклами, для того чтобы между ними был слой воздуха. Хорошими теплоизолирующими свойствами обладают дерево и различные пластмассы
Можно обратить внимание на то, что ручки чайников делают именно из этих материалов, для того чтобы не обжечь руки, когда чайник горячий
7
Для создания теплой одежды широко используют вещества, плохо проводящие тепло, такие как войлок, мех, вата, перья и пух различных птиц. Такая одежда помогает сохранять тепло тела. Войлочные и ватные рукавицы используют при работе с горячими предметами, например для того, чтобы снимать с плиты горячие кастрюли. Все металлы, стекло, вода хорошо проводят тепло и являются плохими теплоизоляторами. Тряпкой, смоченной в воде, ни в коем случае нельзя снимать горячие предметы. Вода, содержащаяся в тряпке, мгновенно нагреется и обожжет руку. Знания о способности разных материалов по- разному передавать тепло помогут в походе. Например, чтобы не обжечься о горячую металлическую кружку, ее ручку можно обмотать изоляционной лентой, которая является хорошим теплоизолятором. Для того чтобы снять с костра горячий котелок, можно воспользоваться войлочными, ватными или брезентовыми рукавицами.
8
На кухне, поднимая горячую посуду, чтобы не обжечься, можно использовать только сухую тряпку. Теплопроводность воздуха намного меньше, чем у воды! А ткань структура очень рыхлая, и все промежутки между волокнами заполнены у сухой тряпки воздухом, а у влажной — водой
9
Куропатки, утки и другие птицы зимой не мерзнут потому, что температура лап у них может отличаться от температуры тела более чем на 30 градусов. Низкая температура лап сильно понижает теплоотдачу. Таковы защитные силы организма! ЕСЛИ положить на лежащие рядом на столе кусок пенопласта (или дерева) и зеркало ладони, то ощущения от этих предметов будут разными: пенопласт покажется теплее, а зеркало — холоднее. Почему? Ведь температура окружающего воздуха одинаковая! Стекло — хороший проводник тепла (обладает высокой теплопроводностью), и сразу начнет «отбирать» от руки тепло. Рука будет ощущать холод! Пенопласт хуже проводит тепло. Он тоже будет, нагреваясь, «отбирать» тепло у руки, но медленнее, поэтому и покажется теплее.
Какой коэффициент теплопроводности клееного бруса?
+7 +7
Главная » О домах » Коэффициент теплопроводности клееного бруса
Сегодня мы рассмотрим такие важные показатели клееного бруса, как прочность, долговечность, а также теплопроводность.
В общем, клееный брус – это весьма и весьма прочный материал. Сразу заметим, что этот показатель клееного бруса на 70% превосходит аналогичный – у обыкновенной древесины. Достигается столь высокая прочность описываемого материала за счет уплотнения древесины, которое происходит при сжатии, отсутствии трещин, применения клеев высокого качества, а также тщательнейшей просушки. При этом, нельзя не упомянуть, что современные технологии позволяют добиться не только высокой прочности самой клееной древесины, но и клея, который используется для ее производства.
Поскольку клееный брус применять стали лишь 20-25 лет назад, то точно сказать, сколько прослужит такой дом пока нельзя. Однако, между тем, совершенно очевидно, что аналогичные показатели домов, построенных из других материалов – хуже. Связано это с тем, что такие дома и рассчитываются предварительно на длительный срок службы, чему способствует то, что:
- клееный брус прочнее древесины на 70%;
- поскольку материал отлично просушен, его усадка равна лишь 1-2%;
- в процессе эксплуатации клееный брус не лопается и не растрескивается;
- клееный брус не подвержен гниению и плесени;
- на клееный брус не оказывает воздействие влажность окружающей среды, а также ее температура;
- отсутствует сезонная усадка, которая связана с набуханием древесины весной и летним усыханием.
Одной из важнейших характеристик строительных материалов является теплопроводность. В общем, это способность материала передавать тепло телам, которые менее нагреты и принимать его от более нагретых объектов. Чем ниже теплопроводность материала, тем лучше он сохраняет тепло. Кстати, коэффициент теплопроводности клееного бруса, один из самых низких, ведь он равен всего 0,1 Вт/м*С. Для примера приведем аналогичные показатель других материалов: сосна — 0,18, пенобетон — 0,37, и железобетон — 2,04 Вт/м*С.
Столь низким коэффициентом теплопроводности клееный брус может похвастаться за счет наличия нескольких факторов. Так, в первую очередь, основой клееного бруса выступает древесина, теплопроводность которой также низка. Во-вторых, значительному снижению данного показателя способствует то, что при производстве клееного бруса используется клей, который является прекрасным теплоизолятором.
ЗАПАСЫ И ДОБЫЧА
Железо — один из самых распространённых элементов в Солнечной системе, особенно на планетах земной группы, в частности, на Земле. Значительная часть железа планет земной группы находится в ядрах планет, где его содержание, по оценкам, около 90 %. Содержание железа в земной коре составляет 5 %, а в мантии около 12 %.
Железо
В земной коре железо распространено достаточно широко — на его долю приходится около 4,1 % массы земной коры (4-е место среди всех элементов, 2-е среди металлов). В мантии и земной коре железо сосредоточено главным образом в силикатах, при этом его содержание значительно в основных и ультраосновных породах, и мало — в кислых и средних породах.
Известно большое число руд и минералов, содержащих железо. Наибольшее практическое значение имеют красный железняк (гематит, Fe2O3; содержит до 70 % Fe), магнитный железняк (магнетит, FeFe2O4, Fe3O4; содержит 72,4 % Fe), бурый железняк или лимонит (гётит и гидрогётит, соответственно FeOOH и FeOOH·nH2O). Гётит и гидрогётит чаще всего встречаются в корах выветривания, образуя так называемые «железные шляпы», мощность которых достигает несколько сотен метров. Также они могут иметь осадочное происхождение, выпадая из коллоидных растворов в озёрах или прибрежных зонах морей. При этом образуются оолитовые, или бобовые, железные руды. В них часто встречается вивианит Fe3(PO4)2·8H2O, образующий чёрные удлинённые кристаллы и радиально-лучистые агрегаты.
Содержание железа в морской воде — 1·10−5-1·10−8 %
В промышленности железо получают из железной руды, в основном из гематита (Fe2O3) и магнетита (FeO·Fe2O3).
Существуют различные способы извлечения железа из руд. Наиболее распространённым является доменный процесс.
Первый этап производства — восстановление железа углеродом в доменной печи при температуре 2000 °C. В доменной печи углерод в виде кокса, железная руда в виде агломерата или окатышей и флюс (например, известняк) подаются сверху, а снизу их встречает поток нагнетаемого горячего воздуха.
Кроме доменного процесса, распространён процесс прямого получения железа. В этом случае предварительно измельчённую руду смешивают с особой глиной, формируя окатыши. Окатыши обжигают, и обрабатывают в шахтной печи горячими продуктами конверсии метана, которые содержат водород. Водород легко восстанавливает железо, при этом не происходит загрязнения железа такими примесями, как сера и фосфор, которые являются обычными примесями в каменном угле. Железо получается в твёрдом виде, и в дальнейшем переплавляется в электрических печах. Химически чистое железо получается электролизом растворов его солей.
описание различных пород, необходимость таблицы коэффициентов теплопроводности
Древесина — экологически чистый и практичный материал. Дерево активно применяется для внутренней отделки помещений. Материал также используется в строительстве загородных домов и заведений для туристов, в которых большую роль играет экологичность здания
При строительстве важно учесть теплопроводность дерева и многие другие параметры. Внутренняя отделка тоже требует внимания к характеристикам, ведь породы по-разному реагируют на тепло и влагу
Разновидности и использование древесины
В строительстве применяются разнообразные породы древесины, которые принято разделять на хвойные и лиственные. К хвойным относятся такие виды:
Сосна. Прочный и практичный материал для выполнения строительных работ. В нем собрано большое количество смолы, за счет чего он справляется с излишней влагой, при этом не поддается коррозии при сушке.
Ель и пихта. Довольно прочные, но сучковатые материалы. Имеют приятый оттенок и незначительное количество смолы
При строительстве применяются как материал для элементов второстепенной важности.
Кедр. Невзирая на то, что материал мягкий, он довольно прочный.
Лиственные породы делятся на мягкие и твердые. Это такие виды:
- Дуб. Высококачественный материал, обладающей высокой прочностью и надежностью. У дуба натуральный и приятный для глаза цвет. Как правило, он применяется для изготовления мебели, при возведении лестничного марша. Наиболее роскошно выглядит настоящий мореный дуб (выдержанный в воде около двух лет).
- Береза. Не столь прочный материал, зато однородный, за счет чего имеет максимально четко выраженную структуру. Из этого вида древесины получается качественная фанера, которая легко окрашивается и полируется.
- Осина. Слишком мягкий, но при этом практически не имеющий сучков вид древесины. Легко поддается обработке, но мелкие детали из осины делать не стоит.
- Липа. Широко применяется в производстве мебели. Прекрасно сохраняет свой первозданный вид даже после сушки. Липа устойчива к влаге.
- Клен. Довольно практичный материал, но весьма быстро рушится под воздействием влаги и вредителей. Неплохо красится, обрабатывается и проклеивается. Широко применяется как в строительстве, так и в изготовлении мебели.
- К лиственному типу также относится красное дерево. Красивый, дорогой и прочный материал. Чаще всего используется для элитного мебельного производства.
Достоинства материала
Строительство с использованием древесины имеет свои преимущества и недостатки. Главными плюсами при выборе такого материала будут:
- Экологичность. Самый весомый аргумент в пользу древесины — экологическая чистота. Некоторые современные материалы могут выделять пары тяжелых металлов и прочих химических элементов, что пагубно повлияет на здоровье жильцов дома.
- Ремонтопригодность. Части, сделанные из древесины, будет довольно легко отремонтировать в случае поломки или износа.
- Прочность и устойчивость ко многим внешним факторам, что делает долгим срок службы изделий из древесины. При правильной обработке этот материал будет безотказно служить долгие годы.
- Простота обработки.
- Плохая теплопроводность.
- Хорошие звукоизоляционные свойства.
Довольно обширный список. При этом маленькое число недостатков:
- Сильная зависимость свойств материала от того, в каких условиях росло дерево. Выбрать из-за этого качественный экземпляр бывает трудно.
- Изменения размеров из-за воздействия влажности и сухости. Но этот недостаток легко поправим обработкой.
- Легкая воспламеняемость.
Влияние теплопроводности
От коэффициента теплопроводности древесины напрямую зависит ее способность сохранять температуру в помещении. Лидирующую позицию по сбережению тепла занимает кедр. Немного отстают ель, лиственница и другие сосновые породы. Все зависит напрямую от размера бревна (его диаметра), влажности материала, подгонки и утепления стыков.
Строение из сосны толщиной всего в 10 см можно сравнить со стеной из кирпича шириной в 58 см или железобетонной — 113 см. Правильно возведенный из дерева дом будет довольно компактным и теплым. Поэтому при строительстве нужно учитывать таблицу теплопроводности дерева.
Максимально тяжелое хвойное дерево лиственница — победитель сосны по теплопроводности. Она имеет более низкий коэффициент.
Сосна — наиболее распространенное и часто применяемое для строительства дерево. Более того, с финансовой стороны вопроса это еще и максимально бюджетный вариант. Сосна легко поддается обработке, способна украсить дом или баню своим внешним видом.
kaminguru.com
Синий + желтый
Создание оптимального микроклимата
Факторы, влияющие на теплопроводность
Коэффициент теплопроводности материала зависит от нескольких факторов:
При повышении данного показателя взаимодействие частиц материала становится прочнее. Соответственно, они будут передавать температуру быстрее. А это значит, что с повышением плотности материала улучшается передача тепла.
Пористость вещества. Пористые материалы являются неоднородными по своей структуре. Внутри них находится большое количество воздуха. А это значит, что молекулам и другим частицами будет сложно перемещать тепловую энергию. Соответственно, коэффициент теплопроводности повышается.
Влажность также оказывает влияние на теплопроводность. Мокрые поверхности материала пропускают большее количество тепла. В некоторых таблицах даже указывается расчетный коэффициент теплопроводности материала в трех состояниях: сухом, среднем (обычном) и влажном.
Выбирая материал для утепления помещений, важно учитывать также условия, в которых он будет эксплуатироваться
Температура материала
С другой стороны, передача тепла в неметаллах главным образом связана с колебаниями решетки и обмене решеточными фононами. За исключением кристаллов высокого качества и низких температур, путь пробега фононов в решетке значительно не уменьшается при высоких температурах, поэтому и теплопроводность остается постоянной величиной во всем температурном диапазоне, то есть является незначительной. При температурах ниже температуры Дебая способность неметаллов проводить тепло, наряду с их теплоемкостью, значительно уменьшается.
Фазовые переходы и структура
Когда материал испытывает фазовый переход первого рода, например, из твердого состояния в жидкое или из жидкого в газ, то его теплопроводность может измениться. Ярким примером такого изменения является разница этой физической величины для льда (2,18 Вт/(м*К) и воды (0,90 Вт/(м*К).
Изменения кристаллической структуры материалов также влияют на теплопроводность, что объясняется анизотропными свойствами различных аллотропных модификаций вещества одного и того же состава. Анизотропия влияет на различную интенсивность рассеивания решеточных фононов, основных переносчиков тепла в неметаллах, и в различных направлениях в кристалле. Здесь ярким примером является сапфир, проводимость которого изменяется от 32 до 35 Вт/(м*К) в зависимости от направления.
Электрическая проводимость
Теплопроводность в металлах изменяется вместе с электропроводностью согласно закону Видемана—Франца. Это связано с тем, что валентные электроны, свободно перемещаясь по кристаллической решетке металла, переносят не только электрическую, но и тепловую энергию. Для других материалов корреляция между этими типами проводимости не является ярко выраженной, ввиду незначительного вклада электронной составляющей в теплопроводность (в неметаллах основную роль в механизме передачи тепла играют решеточные фононы).
Процесс конвекции
Воздух и другие газы являются, как правило, хорошими теплоизоляторами при отсутствии процесса конвекции. На этом принципе основана работа многих теплоизолирующих материалов, содержащих большое количество небольших пустот и пор. Такая структура не позволяет конвекции распространяться на большие расстояния. Примерами таких материалов, полученных человеком, являются полистирен и силицидный аэрогель. В природе на том же принципе работают такие теплоизоляторы, как шкура животных и оперение птиц.
Легкие газы, например, водород и гель, имеют высокие значения теплопроводности, а тяжелые газы, например, аргон, ксенон и радон, являются плохими проводниками тепла. Например, аргон, инертный газ, который тяжелее воздуха, часто используется в качестве теплоизолирующего газового наполнителя в двойных окнах и в электрических лампочках. Исключением является гексафторид серы (элегаз), который является тяжелым газом и обладает относительно высокой теплопроводностью, ввиду его большой теплоемкости.
Сравнительный анализ основных технических характеристик базальтовой ваты и пенополистирола
Огнестойкость
По сравнению с пенополистиролом базальтовая вата обладает более высокой огнестойкостью. Волокна базальтовой ваты спекаются при температуре около 1500 градусов. Однако максимально допустимая температура использования этого теплоизоляционного материала в виде матов и плит ограничивается из-за связующих веществ, которые были использованы при формировании готовых изделий. При температуре около 600 градусов связующие вещества разрушаются, а базальтовая плита или мат теряет свою целостность. Необходимо отметить, что пенопостирол без каких-либо последствий может выдержать температуру, которая не превышает 75 градусов.
Горючесть
Не меньшее значение имеют и такой показатель, как горючесть — способность материала к горению. Современные строительные материалы принято подразделять на:
- негорючие (НГ) — способны выдержать воздействие очень высоких температур без воспламенения, потери прочности, деформации структуры и изменения других свойств.
- горючие (Г) — степень горючести определяется по таким показателям, как воспламеняемость, дымообразующая способность, распространение пламени, токсичность.
При этом важно отметить, что если материалы класса НГ являются не только полностью пожаробезопасными, но и препятствуют распространению огня, то материалы класс Г представляют пожарную опасность всегда.
Горючесть базальтовой ваты, в основе которой лежат неорганические материалы, которые по своей природе не могут гореть, определяется в зависимости от количества используемых при производстве утеплителя органических связующих веществ. Качественная базальтовая вата (например, торговой марки «Белтеп») содержит не более 4,5% связующих веществ, поэтому ей присваивается группа НГ. В случае более высокого содержания органических веществ группа горючесть базальтовой ваты меняется до группы Г1 (слабо горючие материалы) или Г2 (умеренно горючие материалы).
Пенополистирол, независимо от вида материала, всегда относится к классу Г. При этом группа горючести этого теплоизоляционного материала может меняться от Г1 (слабо горючий материал) до Г4 (сильно горючий материал).
Водопоглощение
Базальтовая вата обладает открытой пористостью, поэтому способна впитывать влагу (до 2% по объему, и до 20% по массе). А поскольку вода является превосходным проводником тепла, при попадании влаги теплоизоляционные характеристики базальтовой ваты значительно ухудшаются (вплоть до полной непригодности). И хотя производители обрабатывают базальтовую вату гидрофобизирующими добавками, которые препятствуют впитыванию влаги, специалисты рекомендуют надежно защищать этот теплоизоляционный материал от воздействия влаги паро- и гидроизоляционными барьерами.
В отличие от базальтовой ваты пенополистирол обладает закрытой замкнутой пористостью, поэтому характеризуется высоким сопротивлением капиллярному водопоглощению (до 0,4% по объему) и диффузии водяных паров.
Прочность
Под прочностными характеристиками подразумеваются такие показатели, как прочность материала на отрыв слоев, сжатие при 10% деформации, сдвиг/срез, изгиб и т.д.
У базальтовой ваты прочностные характеристики зависят от плотности материала и количества связующих веществ. У пенополистирола эти показатели зависят исключительно от плотности материала. При этом пенополистирол характеризуется более высокими показателями прочности на сжатие при 10% деформации, чем базальтовая вата с меньшей плотностью (например, прочность на сжатие при 10% деформации пенополистирола плотностью 35-45 кг/м3 составляет около 0,25-0,50 МПа, в то время как у базальтовой ваты плотностью 80-190 кг/м3 этот показатель колеблется в пределах 0,15-0,70 МПа). Отметим, что у базальтовой ваты плотностью 11-70 кг/м3 измеряются не прочностные характеристики, а значение сжимаемости под нагрузкой 2000 Па.
Теплопроводность
Одним из важнейших показателей любого теплоизоляционного материала является его теплопроводность. Исследования показали, что оба рассматриваемых нами материала имеют практически одинаковые показатели теплопроводности: у базальтовой ваты — 0,033-0,043 Вт/м•°C, у пенополистирола — 0,028-0,040 Вт/м•°C. Отметим, притом, что наименьший показатель теплопроводности имеет воздух (0,026 Вт/м•°C), и один, и второй теплоизоляционный материал является эффективным утеплителем.
Понятие «теплопроводность»
следует основательно подойти к делу
Теплопроводностью называют такую способность различных материальных тел к теплообмену (переносу энергии) к менее нагретым частям тела от его более нагретых частей. Этот процесс возможен, благодаря различным частицам тела, которые хаотически движутся. Такими частицами являются:
- молекулы;
- атомы;
- электроны и так далее.
Такой теплообмен возможен во всех телах, в которых наблюдается неоднородное распределение температурных показателей. Сам механизм переноса тепла будет напрямую зависеть от агрегатного состояния рассматриваемого материала.
Также термин «теплопроводность» применяется для обозначения количественной характеристики способности любого физического тела проводить тепло. Если сравнивать тепловые цепи с цепями электрическими, то такой термин является аналогом проводимости.
Для того чтобы охарактеризовать количественную способность физического тела проводить тепло, используется специальная величина, которая именуется коэффициентом теплопроводности. Эта характеристика равна количеству теплоты, которое проходит через образец материала, обязательно однородного, единичной площади и единичной длины за единицу времени при единичной разнице температур. В известной всем системе СИ такая величина измеряется в Вт/(м*градус Цельсия).
Само явление теплопроводности зиждется на принципах, которые с лёгкостью объясняет молекулярно-кинетическая теория. Они заключаются в том, что нагретые молекулы двигаются намного быстрее, чем молекулы, пребывающие в своём обычном состоянии, поэтому при своём быстром хаотическом движении они способны влиять на другие молекулы, находящиеся в более холодных частях тела и передавать им своё тепло.
Влияние концентрации углерода
Концентрация углерода в стали влияет на величину теплопередачи:
- Низкоуглеродистые стали имеют высокий показатель проводимости. Именно поэтому они используются при изготовлении труб, которые затем применяются при создании трубопровода системы отопления. Значение коэффициента варьирует в пределе от 54 до 47 Вт/(м* К).
- Средним коэффициентом для распространенных углеродистых сталей является значение от 50 до 90 Вт/(м* К). Именно поэтому подобный материал используется при изготовлении деталей различных механизмов.
- У металлов, которые не содержат различных примесей, коэффициент составляет 64 Вт/(м* К). Это значение несущественно изменяется при термическом воздействии.
Таким образом, рассматриваемый показатель у легированных сплавов может меняться в зависимости от температуры эксплуатации.