Мостовой трехфазный выпрямитель: схема выпрямления
Содержание:
- Трехфазные выпрямители
- Основные характеристики
- Выбор выпрямительных диодов
- Физико-технические параметры
- Флизелиновые обои
- Выпрямитель электрического тока
- Мостовая схема — выпрямитель
- Схемные решения преобразователей на основе тиристоров
- Трехфазная мостовая схема выпрямления
- Сравнение однофазного и трехфазных устройств
- Действие схемы
- Физические свойства p-n перехода
- 2.2.1. Трехфазный управляемый выпрямитель с нулевым выводом
Трехфазные выпрямители
Среди трехфазных схем наибольшее распространение получили однонаправленная схема выпрямления или схема Миткевича и мостовая схема, известная также как схема Ларионова.
Рассмотрим сначала однонаправленную схему выпрямителя.
В однонаправленной схеме вторичные обмотки трехфазного трансформатора соединены звездой. К фазам а, b и с подключены диоды Д1, Д2 и Д3, катоды которых соединены в точке . Нагрузка Rн подключена между общим выводом трех вторичных обмоток трансформатора и общей точкой присоединения катодов.
Ток на каждом диоде будет протекать только тогда, когда потенциал на аноде будет выше потенциала на катоде. Это возможно в течении 1/3 периода, когда напряжение в данной фазе выше напряжений в двух других фазах. То есть когда U2а>U2b и U2a>U2c, диод Д1 будет открыт, в то время как Д2 и Д3 будут заперты. Под действием напряжения U2а ток замыкается через обмотку фазы а, диод Д1 и нагрузку Rн. В следующую треть периода открывается диод Д2, затем Д3 и т.д.
Напряжение нагрузки будет равно напряжению фазы с открытым диодом и следовательно ток нагрузки изменяется по тому же закону. При этом ток в нагрузке всегда будет больше 0.
Пульсация тока в такой схеме будет относительно невелика, что понижает требования к сглаживающему фильтру. Недостатком данной схемы, также как однофазной однополупериодной является намагничивание сердечника трансформатора.
Большее распространение в трехфазных выпрямителях получила мостовая схема Ларионова, так как она лишена недостатков однотактной схемы.
В такой схеме одновременно пропускают ток два диода — один с наибольшим положительным потенциалом анода относительно нулевой точки трансформатора из катодной группы диодов, другой — с наибольшим отрицательным потенциалом катода. Нагрузка подключается между анодной и катодной группой диодов.
В интервал времени t1-t2 пропускать ток будут диоды Д1 и Д4, так как наибольший положительный потенциал имеет анод фазы а, а наибольшим отрицательным потенциалом обладает катод фазы b. В интервале t2-t3 пропускать ток будут диоды Д1-Д6, в интервале t3-t4 — Д3-Д6, в интервале t4-t5 — Д3-Д2, в интервале t5-t6 — Д5-Д2 и в последнем интервале — Д5-Д4.
Таким образом напряжение на нагрузке будет иметь вид шести пульсаций за период, а интервал проводимости каждого диода — 2π/3. При этом интервал совместной работы двух диодов — π/6. Среднее значение напряжения на нагрузке будет:
где U2 — действующее значение напряжения на вторичных обмотках трансформатора.
Среднее значение выпрямленного напряжения практически равно максимальному линейному напряжению питающей сети:
где Uab.m — максимальное линейное напряжение вторичной обмотки.
Из достоинств схемы нужно отметить то, что в такой схеме отсутствует вынужденное подмагничивание сердечника трансформатора. Кроме того коэффициент пульсаций значительно ниже, чем у однофазной двухполупериодной схемы и составляет 0,057.
На основе этой схемы можно создать двенадцати, восемьнадцати, двадцатичетырехфазные выпрямители. Для этого используются различные сочетания последовательного и параллельного соединения схем. Чем больше будет фаз и соответственно пар диодов, тем меньше будут выходные пульсации.
Кроме этих схем, могут применяться и управляемые схемы выпрямления, которые наряду с выпрямлением переменного тока обеспечивают и регулировку выходного напряжения (тока). Но об этом мы поговорим в следующий раз.
Основные характеристики
И отдельные диоды, и промышленные диодные сборки описываются стандартным набором технических характеристик:
- это напряжение обратной полярности, которое можно, не опасаясь пробоя, приложить к устройству;
- величина тока обратной полярности, который безопасно можно пропустить по устройству;
- длительность протекания тока по устройству без его перегрева;
- максимальная температура устройства, при которой оно сохраняет свою работоспособность;
- максимальная допустимая частота проходящего тока.
ФОТО: go-radio.ruВариант изображения моста на принципиальной электрической схемеФОТО: go-radio.ruСборка «Диодный мост» на печатной плате
Выбор выпрямительных диодов
При приобретении устройства необходимо руководствоваться такими параметрами:
- значениями вольт-амперной характеристики максимально обратного и пикового тока;
- максимально допустимым обратным и прямым напряжением;
- средней силой выпрямленного тока;
- материалом прибора и типом монтажа.
Также стоит обратить внимание на то, что выпрямительные схемы отличаются по количеству фаз:
- Однофазные. Широко применяются для бытовых электроприборов. Существуют диоды автомобильные и для электродуговой сварки.
- Многофазные. Незаменимы для промышленного оборудования, общественного и специального транспорта.
Диод Шоттки
Отдельную позицию занимает диод Шоттки. Изобрели его в связи с растущими потребностями в развивающейся отрасли радиоэлектроники. Основное отличие его от остальных диодов заключается в том, что в его конструкцию заложен металл-полупроводник как альтернатива p-n переходу. Соответственно, диод Шоттки обладает своими, уникальными свойствами, которыми не могут похвастаться кремниевые выпрямительные диоды. Некоторые из них:
- оперативная возобновляемость заряда благодаря его низкому значению;
- минимальное падение напряжения на переходе при прямом включении;
- ток утечки обладает большим значением.
При изготовлении диода Шоттки применяют такие материалы, как кремний и арсенид галлия, но иногда применяется и германий. Свойства материалов немного отличаются, но в любом случае, максимально допустимое обратное напряжение для выпрямителя Шоттки составляет не более 1200 V.
В противовес всем достоинствам конструкция данного вида имеет и минусы. Например, в сборке моста устройство категорически не воспринимает превышение обратного тока. Нарушение условия приводит к поломке выпрямителя. Также малое падение напряжения происходит при невысоком напряжении около 60-70 V. Если значение превышает этот показатель, то устройство превращается в обыкновенный выпрямитель.
Диод-стабилитрон
Для стабилизации напряжения используют специальное приспособление, способное работать в режиме пробоя, – стабилитрон, зарубежное название которого «диод Зенера». Выполняет свою функцию устройство, работая в режиме пробоя при напряжении обратного смещения. Возрастание силы тока происходит в момент пробоя, одновременно опускается до минимума дифференциальное значение, вследствие чего напряжение стабильное и охватывает достаточно серьезный диапазон обратных токов.
Физико-технические параметры
Основные параметры выпрямительных диодов базируются на таких значениях:
- максимально допустимом значении разницы потенциалов при выпрямлении тока, при котором устройство не выйдет из строя;
- наибольшем среднем выпрямленном токе;
- наибольшем значении обратного напряжения.
Выпрямители промышленность выпускает с разными физическими характеристиками. Соответственно, устройства имеют разную форму и способ монтажа. Разделяются при этом на три группы:
- Выпрямительные диоды большой мощности. Характеризуются пропускной способностью тока до 400 А и являются высоковольтными. Высоковольтные выпрямительные диоды производятся в корпусах двух видов –штыревом, где корпус герметичный и стеклянный, и таблеточном, где корпус из керамики.
- Выпрямительные диоды средней мощности. Обладают пропускной способность от 300 мА до 10А.
- Выпрямительные диоды малой мощности. Максимально допустимое значение тока – до 300 мА.
Флизелиновые обои
Дизайн обоев в квартире с подобной отделкой предоставляет гораздо больше возможностей для обустройства уютного жилища.
Они более долговечны, чем их бумажные собратья, допускают покраску, имеют глубокий рельеф, позволяющий отделывать самые капризные интерьеры, имитировать штукатурку, дерево, кирпичную кладку.
Обои с флизелиновым слоем можно использовать новичкам, они легко наносятся на стены и потолки, не капризны к черновой отделке, помогают задекорировать мелкие недочеты поверхностей за счет своей пластичности.
Флизелиновые обои можно протереть влажной тряпкой без потери их свойств, поэтому их используют для отделки не только парадных комнат. Подойдут они в качестве одежды для коридоров и кухни.
Выпрямитель электрического тока
Его электронная схема, предназначенная для преобразования переменного электрического тока в постоянный (одно полярный) электрический ток. В полупроводниковой аппаратуре выпрямители исполняются на полупроводниковых диодах. В более старой и высоковольтной аппаратуре выпрямители исполняются на электровакуумных приборах – кенотронах. Раньше широко использовались – селеновые выпрямители.
Для начала вспомним, что собой представляет переменный электрический ток. Это гармонический сигнал, меняющий свою амплитуду и полярность по синусоидальному закону. В переменном электрическом токе можно условно выделить положительные и отрицательные полупериоды. Всё то, что больше нулевого значения относится к положительным полупериодам (положительная полуволна – красным цветом), а всё, что меньше (ниже) нулевого значения – к отрицательным полупериодам (отрицательная полуволна – синим цветом).
Выпрямитель, в зависимости от его конструкции «отсекает», или «переворачивает» одну из полуволн переменного тока, делая направление тока односторонним. Схемы построения выпрямителей сетевого напряжения можно поделить на однофазные и трёхфазные, однополупериодные и двухполупериодные.
Однофазная мостовая схема выпрямления
Для удобства мы будем считать, что выпрямляемый переменный электрический ток поступает с вторичной обмотки трансформатора. Это соответствует истине и потому, что даже электрический ток в домашние розетки квартир домов приходит с трансформатора понижающей подстанции. Кроме того, поскольку сила тока – величина, напрямую зависящая от нагрузки, то при рассмотрении схем выпрямления мы будем оперировать не понятием силы тока, а понятием – напряжение, амплитуда которого напрямую не зависит от нагрузки.
Из сземы видно, что диод отсекает отрицательную полуволну. Если мы перевернём диод, поменяв его выводы – анод и катод местами, то на выходе окажется, что отсечена не отрицательная, а положительная полуволна. Среднее значение напряжения на выходе однополупериодного выпрямителя соответствует значению:
Uср = Umax / π = 0,318 Umax
где: π — константа равная 3,14.
Однополупериодные выпрямители используются в качестве выпрямителей сетевого напряжения в схемах, потребляющих слабый ток, а также в качестве выпрямителей импульсных источников питания. Они абсолютно не годятся в качестве выпрямителей сетевого напряжения синусоидальной формы для устройств, потребляющих большой ток. Наиболее распространёнными являются однофазные двухполупериодные выпрямители. Существуют две схемы таких выпрямителей – мостовая схема и балансная.
Работа выпрямительного диода
Мостовая схема — выпрямитель
Двухполупериодные выпрямительные каскады и кривые их выходного напряжения.| Схема и график выходного напряжения трехфазною ныпрямителя. |
Меньшего напряжения на входе: требует мостовая схема двух-полупериодного выпрямителя ( рис. 5.5 6), в которой ток через нагрузку протекает в каждый полупериод в одном направлении через разные пары диодов.
Временные диаграммы напряжений. |
Соотношения между токами и напряжениями для мостовой схемы выпрямителя определяются очень легко.
Вы правильно считаете, что в мостовой схеме выпрямителя наиболее целесообразно использовать полупроводниковые диоды. Применение в этой схеме кенотронов и газотронов сопряжено с определенными трудностями питания цепей накала. Дело в том, что катоды вентилей, включенных в мостовую схему выпрямителя, могут находиться под разными потенциалами, отличающимися на сравнительно большую величину приложенного напряжения. Действительно, в полупериод, когда ток проходит через вентили / и 3, катод вентиля 3 находится под потенциалом нижнего зажима вторичной обмотки трансформатора, а катоды всех остальных вентилей — под потенциалом верхнего зажима вторичной обмотки трансформатора. В другой полупериод, когда ток проходит через вентили 2 и 4, катод вентиля 4 находится под потенциалом верхнего, а катоды других вентилей — под потенциалом нижнего зажима вторичной обмотки трансформатора. Поэтому в случае кенотронов и газотронов цепи накала должны питаться от отдельных обмоток трансформатора.
Схема управляемого выпрямителя с использованием тиратрона. |
Кроме того, наличие полупроводниковых диодов в мостовой схеме выпрямителя, содержащей четыре вентиля, целесообразно и с экономической точки зрения, так как полупроводниковые вентили значительно дешевле кенотронов и газотронов, рассчитанных на ту же мощность.
Мостовая схема выпрямителя. |
Как подбирают тип полупроводниковых вентилей для работы в мостовой схеме выпрямителя.
С какой частотой пульсирует напряжение на нагрузке в мостовой схеме выпрямителя.
После подбора по заданным значениям U0 и / 0 элементов мостовой схемы выпрямителя соединяют их между собой в соответствии с рис. 12.1. Проверив собранную схему, приступают к ее опробованию.
Выпрямительные столбы используют в высоковольтных выпрямителях, а блоки — в мостовых схемах выпрямителей и схемах удвоения выпрямленного напряжения. Параметры и ВАХ столбов в блоков те же, что и у выпрямительных диодов.
Во-первых, вследствие того, что кенотроны имеют большое внутреннее сопротивление, а в мостовой схеме выпрямителя в проводящий полупериод ток проходит одновременно через два вентиля, на которых создается довольно большое падение напряжения. Во-вторых, вследствие того, что катоды четырех кенотронов, включенных в мостовую схему выпрямителя, находятся под разными потенциалами, отличающимися на величину приложенного напряжения. Поэтому при использовании кенотронов цепи накала должны питаться от отдельных обмоток трансформатора.
Выпрямители проверяют на наличие или отсутствие асимметрии плеч вольтметром, который подключают параллельно каждому из плеч мостовой схемы выпрямителей. Неравенство напряжений будет свидетельствовать о неисправностях, которые могут привести к резкому возрастанию фона пере-менного тока. При сильном нагреве диодов выпрямителя ( пробой одного плеча) их выпаивают из схемы и проверяют омметром на прямое и обратное сопротивление.
Блок питания БП-2 отличается от БП-1 типом силового трансформатора ( ТСА-310 вместо ТС-330) и применением мостовой схемы выпрямителей вместо двухполупе-риодной.
Схемные решения преобразователей на основе тиристоров
Преобразователь частоты
Особенностью схем на тиристорах является то, что они рассчитаны на работу с определенным характером нагрузки.
Последовательный и параллельный инверторы тока
Данный тип преобразователей имеет дополнительный конденсатор, включенный последовательно или параллельно нагрузке. Назначение конденсатора – обеспечение надежного запирания тиристоров, не участвующих в прохождении тока по силовой цепи. Для стабилизации тока через нагрузку вход инвертора тока содержит индуктивность, которая в идеальном случае должна стремиться к бесконечности.
Комбинированные схемы
Комбинированная последовательно-параллельная схема содержит два конденсатора и позволяет улучшить нагрузочные характеристики устройства. В частности, такая схема отличается большей устойчивостью при работе с малой нагрузкой.
Последовательная, параллельная и комбинированная схемы
Преобразователь напряжения Мак-Мюррея
Схема Мак-Мюррея включает в себя контур LC. Данный контур образуется из соединения конденсатора и катушки индуктивности через открытый в данный момент тиристор, закрывая противоположный.
Схема Мак-Муррея
Данное решение позволяет питать индуктивную нагрузку, например, устройства, в которых производится индукционный нагрев или сварка металлических конструкций.
Последовательный резонансный инвертор
В подобной схеме емкость конденсатора и индуктивность подобраны таким образом, чтобы на частоте преобразования LC контур находился в резонансе. Таким образом, управление тиристорами будет происходить на резонансной частоте.
Преобразование может вестись на более высокой частоте, что улучшает характеристики схемы из-за лучших условий переключения ключевых элементов.
Трехфазная мостовая схема выпрямления
(схема
Ларионова)
Рисунок 1 – Трехфазная мостовая схема выпрямителя
Трехфазная
мостовая схема в настоящее время нашла наиболее широкое применение. Это связано
с тем, что она имеет лучшие технико-экономические показатели по сравнению с
другими схемами.
Хорошее качество
выпрямленного напряжения такое же, как и в шестифазной схеме выпрямления со
средней точкой, достигается применением шести вентилей, но выпрямитель при этом
работает с одной трехфазной обмоткой. То есть, при необходимости можно работать
без трансформатора, непосредственно от трехфазной сети переменного тока.
Мостовая схема может быть представлена двумя трехфазными схемами со средним
выводом включенными последовательно. Первый выпрямитель (1) собран на
тиристорах VS1, VS3, VS5 –
которые объединены в катодную группу. Второй выпрямитель (2) – VS2, VS4, VS6
они объединены в анодную группу.
При
последовательном включении выпрямителей выпрямленное напряжение удваивается :
Ud0=Ud0I+Ud0II
,
кроме этого, при
последовательном включении исключаются уравнительные токи – ненужен
уравнительный реактор.
Сравнение однофазного и трехфазных устройств
Однофазный выпрямитель, как правило, менее дорогостоящий, чем трехфазный с одинаковой номинальной мощностью, но это преимущество в затратах становится менее значительным при более высоких нагрузках. Более крупные выпрямители используются в больших системах ИБП, гальванических, электроочистительных и анодирующих установках, больших контроллерах двигателя постоянного тока и т. д.
Любое устройство мощностью более 10 кВт должно иметь трехфазный вход. Кроме того, контроллеры переменного тока с регулируемой частотой, которые напрямую ректифицируют сеть без трансформатора, имеют трехфазный выпрямитель, хотя однофазный вход возможен для двигателей менее 5 кВт.
Ниже приведён список преимуществ трехфазного и однофазного выпрямителей с одинаковой выходной мощностью:
- Входной ток сети ниже и сбалансирован между тремя фазами. Этот баланс важен, если выпрямительная нагрузка является значительной частью общей нагрузки вашего завода.
- Входные гармонические токи меньше и легче подавляются.
- Величина пульсации выхода намного меньше, а частота в 3 раза больше, чем у однофазного выпрямителя. Это значительно облегчает сглаживание с меньшими дросселями и / или конденсаторами.
Средний ток каждого составляет около 67% от значения для однофазного выпрямителя. Поэтому могут использоваться более мелкие устройства и их легче распределять вокруг радиаторов. Для небольших устройств эти преимущества не столь важны. Но для больших выпрямителей (более 10 кВт) они становятся более значительными.
Действие схемы
Действие схемы 3-фазного полностью контролируемого мостового выпрямителя описывается в этой странице. Трехфазный полностью контролируемый мостовой выпрямитель может быть сконструирован, используя шесть тиристоров. Можно видеть, что напряжение фазы А является наивысшим из трех фазных напряжений, когда Θ находится между 30° и 150°.
Также можно видеть, что напряжение фазы В является наивысшим трехфазных напряжений, когда Θ находится в между 150 и 270° и что напряжение фазы С является наивысшим из фазных напряжений, когда Θ находится между 270 и 390° или 30° в следующем цикле.
Напряжение фазы А является самым низким трехфазных напряжений, когда Θ находится между 210 и 330°. Можно также видеть, что напряжение фазы В является самым низким из фазных напряжений, когда Θ находится между 330 и 450° или 90° в следующем цикле, и что напряжение фазы С является самым низким, когда Θ находится 90 и 210°.
Если используются диоды, диод d1 вместо s1 проводил бы напряжение от 30 до 150°, диод d3 проводил бы от 150 до 270° и диод d5 – от 270 до 390° или 30° в следующем цикле. Таким же образом, диод d4 проводил бы от 210 до 30°, диод d6 – от 330 до 450° или 90° в следующем цикле, и диод d2 проводил бы от 90 до 210°. Положительный рельс выходного напряжения моста соединяется с наивысшими сегментами конверта трехфазных напряжений и отрицательного рельса выведенного напряжения к самым низким сегментам конверта.
На любой момент кроме переходных периодов, когда электрический ток перемещен от одного диода к другому, только одна из следующих пар работает в каждый момент.
Промежуток Θ | Работающий диод |
30 до 90 | D1 и D6 |
90 до 150 | D1 и D2 |
150 до 210 | D2 и D3 |
210 до 270 | D3 и D4 |
270 до 330 | D4 и D5 |
330 до 360 и 0 до 30 | D5 и D6 |
Будет интересно Законы Кирхгофа простыми словами: определение для электрической цепи
Если используются тиристоры, их включение может быть задержано выбором нужного угла открытия. Когда тиристоры открываются при угле 0, выход из мостового выпрямителя такой же, как из схемы с диодами. Например, видно, что d1 начинает проводить только после Θ = 30°. Действительно, он может начать проводить только после Θ = 30°, так, как он реверсивно направлен до Θ = 30°. Смещение через d1 становится равным 0, когда Θ = 30° и диод d1 начинает становиться прямонаправленным только после Θ = 30°.
Когда Va(Θ)= E*sin (Θ), диод d1 обратно направлен перед Θ = 30° и прямонаправлен когда Θ = 30°. При нулевом угле открытия тиристоров s1 открывается, когда Θ = 30°. Это означает, что если синхронизирующий сигнал нужен для открытия s1, то сигнальное напряжение Va(Θ) отстает на 30° и если угол открытия Θ, тиристор s1 запущен, когда Θ = α + 30°. Предоставляют, что проводимость непрерывна, следующая таблица представляет пару тиристоров в проводимости в любой момент.
Промежуток Θ | Работающий диод |
α + 30 до α + 90 | S1 и S6 |
α + 90 до α + 150 | S1 и S2 |
α + 150 до α + 210 | S2 и S3 |
α + 210 до α + 270 | S3 и S4 |
α + 270 до α + 330 | S4 и S5 |
α + 330 до α + 360 и α + 0 до α + 30 | S5 и S6 |
Работа мостового выпрямителя иллюстрируется с помощью апплета, который следует за этим параграфом. Вы можете установить угол открытия в рамках 0° < угол открытия < 180° и вы также можете установить мгновенный угол.
Апплет показывает пару тиристоров в проводящем состоянии в выбранный момент. Путь электрического тока показывается в красном цвете на схеме. Мгновенный угол может быть набран в его текстовом поле, или изменен перемещением кнопки линии прокрутки. Вращающаяся векторная диаграмма весьма полезна, чтобы иллюстрировать, как работает схема. Как только угол открытия установлен, позиция вектора для угла открытия установлен.
Выпрямитель трехфазный большой мощности
Затем с изменением мгновенного угла проводящая пара соединяется с толстыми оранжевыми дугами. (на рисунке) Один способ представить себе – вообразить две щетки, которые являются 120° шириной и устройство в фазе соединенное с поведением щеток.
Щетка, которая имеет “угол открытия” написано рядом она действует как щетка соединенная с положительным рельсом и другая действует как будто бы она соединена с отрицательным рельсом. Эта диаграмма иллюстрирует, как схема выпрямителя действует как коммутатор и преобразует переменный ток в постоянный. Выходное напряжение определяется амплитудой фазового напряжения, являясь единым значением.
Физические свойства p-n перехода
Главным элементом, использующимся при создании выпрямительного узла, является диод. В основе его работы лежит электронно-дырочный переход (p-n).
Общепринятое определение гласит: p-n переход — это область пространства, находящаяся на границе соединения двух полупроводников разного типа. В этом пространстве образуется переход n-типа в p-тип. Значение проводимости зависит от атомного строения материала, а именно от того, насколько прочно атомы удерживают электроны. Атомы в полупроводниках располагаются в виде решётки, а электроны привязаны к ним электрохимическими силами. Сам по себе такой материал является диэлектриком. Он или плохо проводит ток, или не проводит его совсем. Но если в решётку добавить атомы определённых элементов (легирование), физические свойства такого материала кардинально изменяются.
Избыток заряда одного знака заставляет носителей отталкиваться друг от друга, в то время как область с противоположным зарядом стремится притянуть их к себе. Электрон, перемещаясь, занимает свободное место, дырку. При этом на его старом месте также образовывается дырка. В результате чего создаётся два потока движения зарядов: один основной, а другой обратный. Материал с отрицательным зарядом в качестве основных носителей использует электроны, его называют полупроводником n-типа, а с положительным зарядом, использующим дырки, p-типа. В полупроводниках обоих типов неосновные заряды образуют ток, обратный движению основных зарядов.
В радиоэлектронике из материалов для создания p-n перехода используется германий и кремний. При легировании кристаллов этих веществ образуется полупроводник с различной проводимостью. Например, введение бора приводит к появлению свободных дырок и образованию p-типа проводимости. Добавление фосфора, наоборот, создаст электроны, и полупроводник станет n-типа.
2.2.1. Трехфазный управляемый выпрямитель с нулевым выводом
Трехфазная
управляемая схема с нулевым выводом
приведена на рис. 2.7.
Рис.
2.7. Трехфазный управляемый выпрямитель
с нулевым выводом
Так
же как и в неуправляемых выпрямителях,
индуктивности обмоток трансформатора
представлены в виде включенных в цепи
вторичных обмоток анодных сопротивлений
Xa
. Предполагается активно-индуктивная
нагрузка. При рассмотрении режима работы
также, как и в разделе 1.2, обобщаются
аналитические зависимости на m-фазную
систему с тем, чтобы подставляя затем
в результирующие формулы частные
значения m=3
и m=6,
получить зависимости для трехфазной и
шестифазной схем с нулевым выводом.
Угол
управления
отсчитывается вправо от точки естественной
коммутации и находится в пределах до
максимума синусоиды вторичного
напряжения, как показано на рис. 2.7, б.,
на угол
.
Продолжительность работы вентилей
зависит от отношения индуктивных
сопротивлений в катодной и анодной
цепях Xd
и Xa
к активному сопротивлению нагрузки Rd
. На рис. 2.7, в. показан график анодного
тока для случая Xd=0
. Выпрямленный ток при этом угле
в этом случае получается прерывистым.
Ток остается так же прерывистым если
Xd
и Xa
имеют малое значение (пунктирные кривые
на том же рисунке 2.7, в). На рис. 2.7, г.
показан режим начально-непрерывный
(граничный режим). Здесь уже нет разрывов
в кривой тока, но нет и перекрытия кривых
анодных токов (угол коммутации =0).
Режиму непрерывного тока с конечным
значением угла коммутации соответствуют
диаграммы анодных токов на рис. 2.7, д.
С
переходом к режиму непрерывного тока,
пока углы коммутации очень малы, среднее
значение анодного и выпрямленного токов
становятся зависимыми через угол
коммутации
от соотношения катодного Xd
и анодного Xa
.
С
переходом к начально-непрерывному току,
когда время протекания тока через
вентиль
становится равным
,
среднее значение выпрямленного напряжения
независимо от соотношения индуктивных
и активных сопротивлений в преобразовательном
контуре определяется интегралом
(2.21)
Далее,
при рассмотрении m
–фазной схемы на активно-индуктивную
нагрузку, ограничимся режимом, когда
Xd
=.
Схема
замещения для коммутирующего узла при
участии в коммутации тока только двух
анодов приведена на рис.2.8, а.
Рис.
2.8. Процесс коммутации многофазного
управляемого выпрямителя
До
начала коммутации тока замкнут ключ
VS1
и по преобразовательному контуру будет
протекать ток
.
В момент замыкания ключаVS2
начинается коммутация тока во внутреннем
контуре, включающем две анодные цепи. Внутренний ток
короткого замыканиябудет таким же, как и у неуправляемого
выпрямителя.
Принужденная
составляющая
определяется
по аналогии для неуправляемого выпрямителя
(1.105)
.
(2.22)
Свободная
составляющая
соответствует
(рис. 2.8, г) ординате косинусоиды при углеt
=
.
(2.23)
Суммируя
алгебраически (2.22) и (2.23), получаем
выражение для тока
в первый коммутационный для данного
вентиля период
.
2.24)
Аналитическую
связь между и
получим после подстановки в (2.24) вместо
ωt
угол
и ток Id
вместо
(2.25)
Графически
угол
определяется по отрезку на оси абсцисс,
соответствующей дуге косинусоиды,
крайние ординаты которой определяются,
как это видно из рис. 2.8, г,
и,
а высота равнаId
. При графическом определении угла
наглядно видно, как меняется угол
коммутации
при неизменном токе Id
по мере увеличения
от нуля до 90˚. Уменьшение угла
с ростом угла
объясняется возрастанием мгновенных
значений междуфазного напряжения,
участвующего в процессе коммутации
тока. По выделенному жирной линией
участку косинусоиды построена на рис.
2.9,в кривая анодного тока
в первый период коммутации в вентилеVS2.
Рис. 2.9. Линейные диаграммы трехфазного
управляемого выпрямителя