Схема подключения пускателя

Назначение и особенности малогабаритных контакторов

Частая перемена тока в электрических сетях при включении и отключении электрооборудования приводит к аварийным ситуациям. Для их предотвращения используется контактор КМИ, работающий дистанционно под управлением слабыми электрическими токами. Название расшифровывается как контактор малый. Устройство известно также под названием контактор КМЭ, то есть, электромагнитный. Он выполняет замыкание и размыкание электрических цепей, находящихся в обычном режиме. Данные приборы не защищают от коротких замыканий, как автоматы, а лишь осуществляют связку номинальных токов на различных линиях.

Малогабаритный контактор КМИ рассчитан на токовую нагрузку в пределах 9-95 А. В основном, это асинхронные электрические двигатели с короткозамкнутым ротором, а также различные типы нагрузок с малой индуктивностью. Устройства, работающие с токовой нагрузкой до 40 А, оборудованы одной группой контактов замыкания-размыкания. При токе свыше 40 А устанавливаются две отдельные контактные группы – замыкающая и размыкающая.

Данные приборы коммутируют трехфазные конденсаторные батареи, а также первичные обмотки в трехфазных низковольтных трансформаторах. Точно такие же функции выполняет контактор малогабаритный КМЭ – электромагнитный.

Аппаратура такого типа обладает несомненными преимуществами:

  • Серия КМИ – IEK выпускается в широком ассортименте, существенно превышающем количество аналогов на отечественном рынке электроприборов.
  • Совместно с контакторами идет большое количество дополнительных устройств – контактных приставок, электротепловых реле, приставок выдержки времени и другой полезной аппаратуры. Они защищают электродвигатель от максимальных токовых перегрузок, перекосов и асимметрии фаз, затяжного пуска и заклинивания ротора.
  • Все устройства КМИ — IEK свободно устанавливаются на DIN-рейку, шириной 35 мм, в отличие от отечественных изделий, для которых подобные крепления устанавливаются лишь под заказ.
  • Приборы КМИ – IEK позволяют делать реверс при помощи специального блокирующего механизма.
  • Конструкция крышки позволяет устанавливать дополнительные контакты, используя для этого специальную приставку.

Запуск электродвигателя через ПМ

Как известно, электромагнитный пускатель представляет собой электрический коммутационный прибор, который используется для запуска, защиты и остановки электродвигателей, работающих по асинхронной схеме.

Главным рабочим элементом любого пускателя является электромагнитный контактор для сетей переменного тока.

Обратите внимание

Именно параметры контактора определяют характеристики пускателя, такие как номинальный ток и напряжение, коммутационная износостойкость и способность.

Кроме контактора магнитный пускатель может быть оборудован аппаратами защиты и кнопочной станцией.

Подключение магнитного пускателя в трехфазную сеть

Как следует из схемы подключения , трехфазное напряжение должно быть подано на клеммы ф1, ф2, ф3. Чтобы электродвигатель начал работать, нужно чтобы сработал магнитный пускатель (ПМ) и замкнулись его контакты ПМ1, ПМ2, ПМ3. Чтобы пускатель сработал, необходима подача напряжения, величина которого зависит от мощности катушки.

Катушка магнитного пускателя получает напряжение от ф1. Но перед этим оно проходит через замкнутый контакт тепловой защиты электромотора ТП1. После прохождения через катушку пускателя ток переходит к кнопке ПУСК, а также на блокировочный контакт  магнитного пускателя ПМ4.

Далее напряжение идет на замкнутую кнопку СТОП, после чего происходит замыкание на нуле.

Он даст возможность работы электромотора после отпускания кнопки ПУСК. Это явление называется самоподхват. Чтобы остановить электромотор нужно разорвать цепь катушки ПМ. Для этого нажимают кнопку СТОП (КН2).

При этом произойдет размыкание всех контактов ПМ1, ПМ2, ПМ3, ПМ4. Электромотор остановится до последующих запусков.

Чтобы обеспечить защиту от перегрузок, данная схема содержит тепловое реле (ТП). Электромотор при перегрузках сильно нагревается, как следствие повышенного тока. В результате может произойти его поломка. Это защитное устройство срабатывает при увеличении тока на фазах, происходит размыкание его контактов. В результате имитируется работа кнопки СТОП.

Схема включения в режиме реверса

Выше изложенная схема подключения подходит для электромоторов, работающих в постоянном режиме (циркулярки, насосы и пр.). А вот для агрегатов, которые должны менять направление вращения мотора нужно несколько иное подключение пускателя.

Это кран-балки, лебедки, открыватели ворот и др. Как видно из схемы на изображении, для подключения таких аппаратов необходимо два идентичных пускателя. Кроме того, необходима трехкнопочная схема. То есть должно быть две кнопки ПУСК и одна СТОП.

Важно

Иногда в таких схемах возможно применение и двухкнопочной схемы, но только в случаях очень кратковременных промежутков работы (3-10 с). В таком случае обе кнопки нормально открытые, а самоподхват не используется. В результате агрегат активизируется лишь во время нажатия кнопки.

Когда же она отпущена, аппарат не работает. В остальном же приведенная схема аналогична вышеуказанной.

Подключение ПМ в однофазную сеть

Через магнитный пускатель можно подключить и электромотор, предназначенный для однофазной сети. Для начала также необходимо определиться с типом пускателя. Они классифицируются согласно рабочему току.

Маркируются типы пускателей цифрами от 1 до 7. Чем больше цифра, тем на больший ток рассчитан аппарат. Кроме того, для работы в однофазной сети, катушка пускателя должна быть рассчитана на напряжение 220 В.

Согласно схеме, приведенной на рисунке, необходимо сделать ввод на силовые разомкнутые контакты. Электромотор необходимо подключить к выходу силовых контактов самого пускателя. Питание кнопок ПУСК и СТОП нужно брать с вводов силовых контактов пускателя.

Например, фаза должна быть подключена к кнопке СТОП замкнутого контакта. Далее она должна подключаться на кнопку пуска нормально разомкнутого контакта. А уже с контакта кнопки ПУСК на контакт катушки самого пускателя. Ноль же нужно подсоединить ко второму контакту катушки пускателя.

Чтобы зафиксировать включенной позиции пускателя, необходимо осуществить шунтирование блок контактом пускателя кнопки ПУСК нормально замкнутого контакта.

Как видим, подключение этого элемента как в трехфазную, так и в однофазную сеть, не является очень сложной задачей. Но все же, чтобы его осуществить, необходимо изучить теоретическую базу и подготовиться. В результате можно осуществить правильное подключение, не затратив много времени. Естественно, все описанные операции должны проводиться лишь квалифицированным электриком.

Принцип работы теплового реле

В некоторых случаях тепловое реле может быть встроено в обмотки двигателя. Но чаще всего оно применяется в паре с магнитным пускателем. Это дает возможность продлить срок службы теплового реле. Вся нагрузка по запуску ложится на контактор. В таком случае тепловой модуль имеет медные контакты, которые подключаются непосредственно к силовым входам пускателя. Проводники от двигателя подводятся к тепловому реле. Если говорить просто, то оно является промежуточным звеном, которое анализирует проходящий через него ток от пускателя к двигателю.

В основе теплового модуля лежат биметаллические пластины. Это означает, что они изготавливаются из двух различных металлов. Каждый из них имеет свой коэффициент расширения при воздействии температуры. Пластины через переходник воздействуют на подвижный механизм, который подключен к контактам, уходящим к электродвигателю. При этом контакты могут находиться в двух положениях:

  • нормально замкнутом;
  • нормально разомкнутом.

Первый вид подходит для управления пускателем двигателя, а второй используется для систем сигнализации. Тепловое реле построено на принципе тепловой деформации биметаллических пластин. Как только через них начинает протекать ток, их температура начинает повышаться. Чем с большей силой протекает ток, тем выше поднимается температура пластин теплового модуля. При этом происходит смещение пластин теплового модуля в сторону металла с меньшим коэффициентом теплового расширения. При этом происходит замыкание или размыкание контактов и остановка двигателя.

Важно понимать, что пластины теплового реле рассчитаны на определенный номинальный ток. Это означает, что нагрев до некоторой температуры, не будет вызывать деформации пластин

Если из-за увеличения нагрузки на двигатель произошло срабатывания теплового модуля и отключение, то по истечении определенного промежутка времени, пластины возвращаются в свое естественное положение и контакты снова замыкаются или размыкаются, подавая сигнал на пускатель или другой прибор. В некоторых видах реле доступна регулировка силы тока, которая должна протекать через него. Для этого выносится отдельный рычаг, которым можно выбрать значение по шкале.

Кроме регулятора силы тока, на поверхности может также находиться кнопка с надписью Test . Она позволяет проверить тепловое реле на работоспособность. Ее необходимо нажат при работающем двигателе. Если при этом произошел останов, тогда все подключено и функционирует правильно. Под небольшой пластинкой из оргстекла скрывается индикатор состояния теплового реле. Если это механический вариант, то в нем можно увидеть полоску двух цветов в зависимости от происходящих процессов. На корпусе рядом с регулятором силы тока располагается кнопка Stop . Она в отличие от кнопки Test отключает магнитный пускатель, но контакты 97 и 98 остаются разомкнутыми, а значит сигнализация не срабатывает.

Функционировать тепловое реле может в ручном и автоматическом режиме

С завода установлен второй, что важно учитывать при подключении. Для перевода на ручное управление, необходимо задействовать кнопку Reset

Ее нужно повернуть против часовой стрелки, чтобы она приподнялась над корпусом. Разница между режимами заключается в том, что в автоматическом после срабатывания защиты, реле вернется к нормальному состоянию после полного остывания контактов. В ручном режиме это можно сделать с использованием клавиши Reset . Она практически моментально возвращает контактные площадки в нормальное положение.

Тепловое реле имеет и дополнительный функционал, который оберегает двигатель не только от перегрузок по току, но и при отключении или обрыве питающей сети или фазы. Это особенно актуально для трехфазных двигателей. Бывает, что одна фаза отгорает или с ней происходят другие неполадки. В этом случае металлические пластины реле, к которым поступают другие две фазы начинают пропускать через себя больший ток, что приводит к перегреву и отключению. Это необходимо для защиты двух оставшихся фаз, а также двигателя. При худшем раскладе такой сценарий может привести к выходу из строя двигателя, а также подводящих проводов.

Инструкция — подключение магнитного пускателя через кнопку

Рассмотрим порядок подключения магнитного пускателя на примере управления освещением — включением/выключением обычной лампы.

Для этого понадобятся следующие инструменты, устройства и материалы:

  • магнитный пускатель;
  • кнопка включения магнитного пускателя Пуск (она может быть двух видов — зеленая или черная);
  • кнопка Стоп (красного цвета);
  • установочная коробка для кнопок;
  • двужильный медный провод;
  • патрон с лампой;
  • бокорезы, нож, крестовая отвертка.

Чтобы подключить схему кнопочного выключателя, нужно выполнить следующие действия:

  1. С «плюса» подается питание на кнопку Стоп и от нее же выводится провод на силовой контакт нашего магнитного пускателя;
  2. Выход с кнопки Стоп идет на кнопку Пуск и с нее же выводится «плюс» на вспомогательный контакт устройство, обозначенный как 1L1;
  3. Второй выход с кнопки Пуск идет на базовый контакт пускателя А1;
  4. С гнезда контакта 2Т1 выводится перемычка на А1. Это нужно для того, чтобы после отпускания кнопки «Пуск» цепь не размыкалась, а фаза продолжала поступать на катушку магнитного пускателя и срабатывало самоудержание при однократном нажатии пусковой кнопки. В противном случае для работы устройства придется постоянно держать пусковую кнопку нажатой;
  5. Минусовой провод идет прямиком на разъем А2, а также на 5L3;
  6. Само управляемое электроустройство (в нашем случае лампа) подключается к разъемам 4Т2 и 6L3.

Прежде чем приступить к практическому подключению пускателя — напомним полезную теорию: контактор магнитного пускателя включается управляющим импульсом, исходящим от нажатия пусковой кнопки, с помощью которой подается напряжение на катушку управления. Удержание контактора во включенном состоянии происходит по принципу самоподхвата – когда дополнительный контакт подключается параллельно пусковой кнопке, тем самым подавая напряжение на катушку, вследствие чего пропадает необходимость удерживать кнопку запуска в нажатом состоянии.

Отключение магнитного пускателя в этом случае возможно только при разрыве цепи управляющей катушки, из чего становится очевидной необходимость использования кнопки с размыкающим контактом. Поэтому кнопки управления пускателем, которые называют кнопочным постом, имеют по две пары контактов – нормально открытые (разомкнутые, замыкающие, НО, NO) и нормально закрытые (замкнутые, размыкающие, НЗ, NC)

Данная универсализация всех кнопок кнопочного поста сделана для того, чтобы предвидеть возможные схемы обеспечения моментального реверса двигателя. Общепринято называть отключающую кнопку словом: «Стоп» и маркировать её красным цветом. Включающую кнопку часто называют пусковой, стартовой, или обозначают словом «Пуск», «Вперёд», «Назад».

Классификация контакторных устройств

Существуют различные типы контакторов, отличающихся друг от друга по различным показателям. Среди них можно выделить следующие параметры.

В первую очередь, они классифицируются по назначению. Сюда входят следующие виды и категории:

  1. Приборы для дистанционной коммутации. Большинство из них работает под ручным управлением оператора, используя кнопки или выключатели. В нужное время подается сигнал, и устройство приводится в действие. В другом способе несколько контакторов соединяются в общую автоматизированную систему питания, в которой для подачи команд используется электронная схема. На случай аварийной ситуации предусмотрена система защиты, размыкающая контакты.
  2. Включение мощного электрооборудования при помощи слаботочных линий. Возникает вопрос, для чего нужен контактор в таких случаях? Не лучше ли воспользоваться традиционной кнопкой? Это, конечно, можно сделать, но тогда понадобится очень массивная и громоздкая аппаратура, а сам процесс включения потребует значительных усилий. То же самое касается и выключения. Поэтому для этих целей используются компактные слаботочные устройства, позволяющие с высокой частотой выполнять циклы включения-выключения. Таким образом, слабый ток подается на катушку, а уже потом осуществляется запуск мощного электродвигателя.

Каждый контактор модульный разделяется по типу привода его в действие. В этом случае также можно отметить различные варианты:

  • Электромагнитный привод считается основным, именно он заложен в принципе действия большинства устройств. При подаче напряжения происходит включение, а при отсутствии напряжения прибор отключается. После полного отключения, включение нужно выполнять повторно, что обеспечивает дополнительную безопасность при работе с электроустановками.
  • Контактная группа может быть приведена в движение с помощью пневматических устройств. Такая система, предназначенная для коммутации, не требует электромагнитного привода. Управляющая команда подается импульсом высокого давления. Подобные системы применяются для локомотивов железных дорог, и других установках с пневматикой.

Любой контактор модульный КМ в зависимости от модификации, может быть смонтирован разными способами:

  • Специализированные устройства, в том числе и без корпусов, не имеют каких-либо дизайнерских ограничений и устанавливаются исключительно с позиций нормальной функциональности и безопасной эксплуатации.
  • Существуют конструкции, создаваемые в индивидуальном порядке под конкретную электроустановку. Они не подходят для бытовых условий, поскольку размещаются в специально отведенных местах.
  • При стандартном монтаже модульный контактор и его подключение осуществляются на ДИН-рейку в щитке, вместе с другими устройствами.

Существуют различия и в соответствии с номинальным напряжением основной цепи. В этом случае контактор КМ может входить в группу устройств, работающих с напряжением 220 и 440 вольт или в группу с напряжением 380 и 660 В. Прибор, бывает однополюсный, а также двухполюсный и с большим количеством полюсов – до 5 единиц.

Как подключить модульный контактор (+ схема подключения)

Подключаться такие приборы могут разными способами. Все зависит от требований безопасности, характеристик сети и желаемого результата. Выделяют такие наиболее популярные схемы:

  • реверсивные;
  • простые (используется один контактор для соединения);
  • однофазные.

Есть ряд ошибок, которые допускают неопытные электрики:

нежелание устанавливать в сеть защитные средства автоматики;
наличие ненужных элементов на реверсивной схеме;
нарушение мер предосторожности и безопасности;
подбор МК, несоответствующих характеристикам сети.

Схема простого подсоединения

МК — это незаменимая в электрике вещь. Кто-то скажет, что это простой переключатель, но это не так. Контакторы обладают более продуманной конструкцией, которая является безопасной и стойкой к перепадам напряжения.

Назначение и устройство

Перед подключением необходимо ознакомиться с принципом работы устройства и его особенностями. Включает контактор МП управляющий импульс, который исходит от пусковой кнопки после ее нажатия. Так осуществляется подача на катушку напряжения. Согласно принципу самоподхвата, контактор удерживается в режиме подключения. Суть этого процесса заключается в параллельном подключении дополнительного контакта к кнопке пуска, что организовывает подачу на катушку тока, поэтому необходимость удерживания в нажатом состоянии кнопки запуска пропадает.

С оборудованием кнопки отключения в схеме становится возможным разрыв цепи катушки управления, что отключает МП. Управляющие кнопки устройства носят название кнопочного поста. Они имеют по 2 пары контактов. Универсализация управляющих элементов сделана для организации возможных схем с моментальным реверсом.

Кнопки маркируются названием и цветом. Как правило, включающие элементы называются «Старт», «Вперед» или «Пуск». Обозначаются зеленым, белым или другим нейтральным цветом. Для размыкающего элемента используется название «Стоп», кнопка агрессивного, предупреждающего цвета, обычно красного.

Цепь необходимо коммутировать нейтралью, при использовании в ней катушки на 220 В. Для вариантов с электромагнитной катушкой с рабочим напряжением 380 В, на цепь управления подается снятый с другой клеммы ток. Поддерживает работу в сети с переменным или постоянным напряжением. Принцип схемы базируется на электромагнитной индукции используемой катушки с вспомогательными и рабочими контактами.

Различают два вида МП с контактами:

  1. Нормально замкнутыми — отключение питания на нагрузке происходит в момент срабатывания пускателя.
  2. Нормально разомкнутыми — подача питания осуществляется только во время работы МП.

Второй тип применяется более широко, поскольку большинство устройств функционирует ограниченный период, пребывая основное время в состоянии покоя.

Состав и назначение частей

В основе конструкции магнитного контактора лежит магнитопровод и катушка индуктивности. Магнитопровод представляет собой разделенные на 2 части металлические элементы в форме «Ш», зеркально друг к другу расположенные внутри катушки. Их средняя часть играет роль сердечника, усиливая индукционный ток.

Магнитопровод оснащен подвижной верхней частью с закрепленными контактами, к которым подводится нагрузка. На корпусе МП закрепляются неподвижные контакты, на которых устанавливается питающее напряжение. Внутри катушки на центральном сердечнике установлена жесткая пружина, препятствующая соединению контактов в выключенном состоянии устройства. При этом положении на нагрузку питание не подается.

В зависимости от конструкции, бывают МП малых номиналов на 110 В, 24 В или 12 В, но более широко используются с напряжением 380 В и 220 В. По величине подаваемого тока различают 8 категорий пускателей: «0» — 6,3 А; «1» — 10 А; «2» — 25 А; «3» — 40 А; «4» — 63 А; «5» — 100 А; «6» — 160 А; «7» — 250 А.

Принцип работы

В нормальном (отключенном) состоянии размыкание контактам магнитопровода обеспечивает установленная внутри пружина, приподнимающая верхнюю часть устройства. При подключении к сети МП, в цепи появляется электрический ток, который, проходя по виткам катушки, генерирует магнитное поле. В результате притяжения металлических частей сердечников пружина подвергается сжатию, допуская замыкание контактов движимой части. После этого ток получает доступ к двигателю, запуская его в работу.

ВАЖНО: Для переменного или постоянного тока, который подается на МП, необходимо выдерживать указанные производителем номинальные значения! Как правило, для постоянно тока предельное значение напряжения составляет 440 В, а для переменного не должно превышать показатель 600 В. Если нажимается кнопка «Стоп» или другим способом отключается питание МП, то катушка прекращает генерировать магнитное поле

В результате этого пружина легко выталкивает верхнюю часть магнитопровода, размыкая контакты, что приводит к прекращению подачи на нагрузку питания

Если нажимается кнопка «Стоп» или другим способом отключается питание МП, то катушка прекращает генерировать магнитное поле. В результате этого пружина легко выталкивает верхнюю часть магнитопровода, размыкая контакты, что приводит к прекращению подачи на нагрузку питания.

Реверсивная схема коммутации магнитных пускателей

Схема подключения реверсивного магнитного пускателя применяется тогда, когда требуется обеспечение вращение электродвигателя в обоих направлениях. К примеру, реверсивный пускатель устанавливается на лифт, грузоподъемный кран, сверлильный станок и прочие приборы требующие прямой и обратный ход.

Реверсивный пускатель состоит из двух обыкновенных пускателей собранных по специальной схеме. Выглядит он так:

Схема подключения реверсивного магнитного пускателя отличается от других схем тем, что имеет два совершенно одинаковых пускателя, которые работают попеременно. При подключении первого пускателя двигатель вращается в одну сторону, при подключении второго пускателя, двигатель вращается в противоположную сторону. Если вы внимательно посмотрите на схему, то заметите, что при переменном подключении пускателей, две фазы меняются местами. Это и заставляет трехфазный двигатель вращаться в разные стороны.

К имеющемуся в предыдущих схемах пускателю добавлены второй пускатель «КМ2» и дополнительные цепи управления вторым пускателем. Цепи управления состоят из кнопки «SB3», магнитного пускателя «КМ2», а также изменённой силовой частью подачи питания к электродвигателю. Кнопки при подключении реверсивного магнитного пускателя имеют названия «Вправо» «Влево», но могут иметь и другие названия, такие, как «Вверх», «Вниз». Чтобы защитить силовые цепи от короткого замыкания, до катушек добавлены два нормально замкнутых контакта «КМ1.2» и «КМ2.2», что взяты от дополнительных контактов на магнитных пускателях КМ1 и КМ2. Они не дают возможности включиться обоим пускателям одновременно. На выше приведенной схеме цепи управления и силовые цепи одного пускателя имеют один цвет, а другого пускателя — другой цвет, что облегчает понимание, как работает схема. Когда включается автоматический выключатель «QF1», фазы «A», «B», «C» идут к верхним силовым контактам пускателей «КМ1» и «КМ2», после чего ожидают там включения. Фаза «А» питает управляющие цепи от защитного автомата, проходит через «SF1» — контакты тепловой защиты и кнопку «Стоп» «SB1», переходит на контакты кнопок «SB2» и «SB3» и остается в ожидании нажатия на одну из этих кнопок. После нажатия пусковой кнопки ток движется через вспомогательный пусковой контакт «КМ1.2» или «КМ2.2» на катушку пускателей «КМ1» или «КМ2». После этого один из реверсивных пускателей сработает. Двигатель начинает вращаться. Что бы запустить двигатель в обратную сторону, надо нажать кнопку стоп (пускатель разомкнет силовые контакты), двигатель обесточится, дождаться остановки двигателя и после этого нажать другую пусковую кнопку. На схеме показано, что подключен пускатель «КМ2». При этом его дополнительные контакты «КМ2.2» разомкнули цепь питания катушки «КМ1», что не даст случайного подключения пускателя «КМ1».

Минимальные затраты и отличный результат: оригинальный ремонт маленькой ванной своими руками

Принципиальное устройство

Контактор состоит из нескольких узлов:

  1. Энергетического.
  2. Силового.
  3. Коммутационного.

Энергетический узел обеспечивает формирование электромагнитного поля, достаточного для получения определенной однонаправленной силы. Это поле появляется как следствие протекания электрического тока через катушку с сердечником. Его форма делается либо П-, либо Ш-образной, в зависимости от конструкции этого коммутационного изделия.

Силовые линии магнитного поля наиболее сконцентрированы вблизи сердечника, и поэтому силовой узел выполнен так, чтобы воздействие на него со стороны энергетического узла получилось максимальным. Для более равномерного усилия, возникающего при протекании через катушку переменного тока, в ней делается короткозамкнутый виток. Он играет роль демпфера, который препятствует дребезгу контактов с частотой 50 Гц. Если катушка питается постоянным током, на ее сердечнике располагается диэлектрическая прокладка для предотвращения слипания намагнитившихся деталей.

Силовой узел содержит подвижный подпружиненный ферромагнитный элемент — якорь, который притягивается к неподвижному сердечнику катушки, передавая силу коммутационному узлу. В нем расположены контакты. Их число может быть различным, в зависимости от конструкции контактора. Для управления электродвигателями в трехфазных сетях контактов бывает три-четыре — одинаковых по своим характеристикам. Но могут быть и дополнительные маломощные контакты, используемые для управления вспомогательными элементами схемы.

Расположение дополнительных контактов определяют отличие контактора от магнитного пускателя. Они располагаются в группе с основными контактами, а не сбоку, как в магнитном пускателе.

Кроме контактов в коммутационном блоке расположены камеры для гашения электрической дуги.

Как работает контактор модульный (+ схема управления)

Принцип работы контактора любой модели заключается в том, что группа подвижных контактов постоянно сходится и расходится с неподвижными фиксированными контактами, пропуская и ограничивая течение электрического тока. Можно показаться, что это простой переключатель, но с рядом особенностей.

Схема управления освещением

Первое и самое главное — для обеспечения безопасности нормальное положение контактных групп (режим покоя) разомкнутое. В таких приспособлениях нет никаких механических функций для воздействия на контакты, чтобы они всегда были во включенном состоянии. Они смыкаются лишь тогда, когда на них подают напряжение.

Обратите внимание! К контакторам выдвигаются особые требования электрической безопасности, надежности и стойкости. В отличие от простых переключателей они обладают более высоким качеством исполнения, которое предотвращает аварийные ситуации различного характера

Устройство и принцип работы

Магнитные контакторы или пускатели относятся к коммутационным устройствам, выполняющим дистанционный пуск электродвигателей и прочего оборудования. Конструкция и схема этих приборов очень похожа на электромагнитное реле

Важной дополнительной функцией является возможность своевременно подключать и отключать трехфазную нагрузку. Основным конструктивным элементом служит магнитный сердечник, изготовленный в виде буквы Ш

В качестве материала использовалась электротехническая сталь в виде тонких листов.

Сам сердечник состоит из двух половинок, одна из которых является неподвижной и закрепляется на основании прибора. Другая часть – подвижная – при отсутствии тока удерживается на некотором расстоянии от неподвижной части при помощи пружины. Таким образом, между обеими частями возникает воздушный зазор.
Управление пускателем осуществляется через катушку, помещенную на центральный стержень сердечника, расположенный в неподвижной части. К подвижному магнитопроводу закрепляются контакты посредством мостового соединения. В момент срабатывания пускателя эти мостики перемещаются одновременно с магнитопроводом и совершают замыкание с неподвижной контактной группой.

Пусковое устройство срабатывает после того, как на катушку управления будет подано напряжение. Возникает электромагнитная сила, под действием которой происходит притягивание подвижной части сердечника к неподвижной детали. В результате, силовые контактные группы оказываются замкнутыми, и ток начинает поступать к выходным клеммам. После прекращения подачи напряжения катушка обесточивается, и подвижная часть возвращается на свое место. В этот момент в работу включается возвратная пружина, обеспечивающая размыкание контактов.

Во время выключения на каждом полюсе контактов образуется двойной разрыв, способствующий более эффективному гашению электрической дуги. Функцию дугогасительной камеры выполняет крышка устройства, под которой располагаются контакты.

В пускателе имеется не только основная контактная группа, но и дополнительная – в виде блок-контактов, используемая для вспомогательных целей. В основном, они используются в управлении, в сигнальных и блокирующих схемах.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector