Вредны ли лэп для здоровья человека и окружающей среды

Содержание:

Высокотемпературные сверхпроводники

ВТСП-провод

В проводах на основе высокотемпературных сверхпроводников (ВТСП) использование сверхпроводимости позволяет передавать электрический ток без потерь, а также достичь высокой плотности токов. Большим недостатком ВТСП-проводов является необходимость в постоянном охлаждении, что ограничивает их применение на практике. Несмотря на сложности в производстве и эксплуатации ВТСП-проводов, делаются постоянные попытки применения их на практике. Например, в демонстрационной системе силовой сети, запущенной в эксплуатацию в июле 2006 года в США, при напряжении 138 кВ передаётся мощность в 574 МВА на длину 600 метров.

Первая коммерческая сверхпроводящая линия электропередачи была запущена в эксплуатацию фирмой American Superconductor на Лонг-Айленде в Нью-Йорке в конце июня 2008 года. Энергосистемы Южной Кореи собираются создать к 2015 году сверхпроводящие линии электропередачи общей длиной в 20 км.

Онлайн-курсы

Литература

  • Электромонтажные работы. В 11 кн. Кн. 8. Ч. 1. Воздушные линии электропередачи: Учеб. пособие для ПТУ / Магидин Ф. А.; Под ред. А. Н. Трифонова. — М.: Высшая школа, 1991. — 208 с. — ISBN 5-06-001074-0
  • Рожкова Л. Д., Козулин В. С. Электрооборудование станций и подстанций: Учебник для техникумов. — 3-е изд., перераб. и доп. — М.: Энергоатомиздат, 1987. — 648 с.: ил. ББК 31.277.1 Р63
  • Проектирование электрической части станций и подстанций: Учеб. пособие / Петрова С. С.; Под ред. С. А. Мартынова. — Л.: ЛПИ им. М. И. Калинина, 1980. — 76 с. — УДК 621.311.2(0.75.8)
  • Федоров А. А., Попов Ю. П. Эксплуатация электрооборудования промышленных предприятий. — М.: Энергоатомиздат, 1986. — 280 с.

Видео

Цвет проводов фаза, ноль, земля

Провод заземления: сечение, маркировка и расцветка

Шина заземления

Заземление и зануление электроустановок

Как сделать заземление в квартире если его нет

Что такое заземление

Потери в ЛЭП

Потери электроэнергии в проводах зависят от силы тока, поэтому при передаче её на дальние расстояния напряжение многократно повышают (во столько же раз уменьшая силу тока) с помощью трансформатора, что при передаче той же мощности позволяет значительно снизить потери. Однако с ростом напряжения начинают происходить различные разрядные явления.

В воздушных линиях сверхвысокого напряжения присутствуют потери активной мощности на корону. Коронный разряд возникает, когда напряжённость электрического поля E{\displaystyle E} у поверхности провода превысит пороговую величину Ek{\displaystyle E_{k}}, которую можно вычислить по эмпирической формуле Пика: Ek=30,3β(1+0,298rβ){\displaystyle E_{k}=30{,}3\beta \left({1+{\frac {0{,}298}{\sqrt {r\beta }}}}\right)} кВ/см, где r{\displaystyle r} — радиус провода в метрах, β{\displaystyle \beta } — отношение плотности воздуха к нормальной.

Напряжённость электрического поля прямо пропорциональна напряжению на проводе и обратно пропорциональна его радиусу, поэтому бороться с потерями на корону можно, увеличивая радиус проводов, а также (в меньшей степени) — применяя расщепление фаз, то есть используя в каждой фазе несколько проводов, удерживаемых специальными распорками на расстоянии 40-50 см. Потери на корону приблизительно пропорциональны произведению U(U−Uкр){\displaystyle U(U-U_{\text{кр}})}.

Потери на корону резко возрастают с ростом напряжения, среднегодовые потери на ЛЭП напряжением 500 кВ составляют около 12 кВт/км, при напряжении 750 кВ — 37 кВт/км, при 1150 кВ — 80 кВт/км. Потери также резко возрастают при осадках, особенно изморози, и могут достигать 1200 кВт/км.

В прошлом потери в ЛЭП были очень высокими. Так, в конце XIX века потери на 56-ти километровой линии постоянного тока Крей — Париж составили 45 %. В современных линиях электропередач (по состоянию на 2020 год) потери составляют всего 2 — 3 %. Однако и эти потери пытаются сократить, используя высокотемпературные сверхпроводники. Впрочем, по состоянию на 2020 год линии электропередач на высокотемпературных сверхпроводниках отличаются высокой стоимостью и небольшой протяженностью (самая длинная такая линия построена в 2014 году в Германии и имеет длину всего 1 км).

Потери в ЛЭП переменного тока

Важной величиной, влияющей на экономичность ЛЭП переменного тока, является величина, характеризующая соотношение между активной и реактивной мощностями в линии — cos φ.  — часть полной мощности, прошедшей по проводам и переданной в нагрузку;  — это мощность, которая генерируется линией, её зарядной мощностью (ёмкостью между линией и землёй), а также самим генератором, и потребляется реактивной нагрузкой (индуктивной нагрузкой)

Потери активной мощности в линии зависят и от передаваемой реактивной мощности. Чем больше переток реактивной мощности, тем больше потери активной.

При длине ЛЭП переменного тока более нескольких тысяч километров наблюдается ещё один вид потерь — радиоизлучение. Так как такая длина уже сравнима с длиной электромагнитной волны частотой 50 Гц (λ=cν={\displaystyle \lambda =c/\nu =}6000 км, длина четвертьволнового вибратора λ4={\displaystyle \lambda /4=}1500 км), провод работает как излучающая антенна.

Основные сведения [ править | править код ]

Опоры ЛЭП предназначены для сооружений линий электропередач при расчётной температуре наружного воздуха до −65 °C и являются одним из главных конструктивных элементов ЛЭП, отвечающим за крепление и подвеску электрических проводов на определённом уровне.

В зависимости от способа подвески проводов опоры делятся на две основные группы:

  • опоры промежуточные, на которых провода закрепляются в поддерживающих зажимах;
  • опоры анкерного типа, служащие для тяжения проводов; на этих опорах провода закрепляются в натяжных зажимах.

Эти виды опор делятся на типы, имеющие специальное назначение:

  • Промежуточные прямые опоры устанавливаются на прямых участках линии. На промежуточных опорах с подвесными изоляторами провода закрепляются в поддерживающих гирляндах, висящих вертикально; на опорах со штыревыми изоляторами закрепление проводов производится проволочной вязкой. В обоих случаях промежуточные опоры воспринимают горизонтальные нагрузки от давления ветра на провода и на опору и вертикальные — от веса проводов, изоляторов и собственного веса опоры.
  • Промежуточные угловые опоры устанавливаются на углах поворота линии с подвеской проводов в поддерживающих гирляндах. Помимо нагрузок, действующих на промежуточные прямые опоры, промежуточные и анкерно-угловые опоры воспринимают также нагрузки от поперечных составляющих тяжения проводов и тросов. При углах поворота линии электропередачи более 20° вес промежуточных угловых опор значительно возрастает. При больших углах поворота устанавливаются анкерно угловые опоры.

При установке анкерных опор на прямых участках трассы и подвеске проводов с обеих сторон от опоры с одинаковыми тяжениями горизонтальные продольные нагрузки от проводов уравновешиваются и анкерная опора работает так же, как и промежуточная, то есть воспринимает только горизонтальные поперечные и вертикальные нагрузки. В случае необходимости провода с одной и с другой стороны от опоры можно натягивать с различным тяжением проводов. В этом случае, кроме горизонтальных поперечных и вертикальных нагрузок, на опору будет воздействовать горизонтальная продольная нагрузка.

При установке анкерных опор на углах анкерно-угловые опоры воспринимают нагрузку также от поперечных составляющих натяжения проводов и тросов.

Концевые опоры устанавливаются на концах линии. От этих опор отходят провода, подвешиваемые на порталах подстанций.

Помимо перечисленных типов опор, на линиях применяются также специальные опоры: транспозиционные, служащие для изменения порядка расположения проводов на опорах; ответвлительные — для выполнения ответвлений от основной линии; опоры больших переходов через реки и водные пространства и т. д.

На линиях электропередач применяются деревянные, стальные и железобетонные опоры. Разработаны также опытные конструкции из алюминиевых сплавов и композитных материалов.

Сталь является основным материалом, из которого изготавливаются металлические опоры и различные детали (траверсы, тросостойки, оттяжки) опор. Достоинством стальных опор по сравнению с железобетонными является их высокая прочность при малой массе. Возможность повторного использования в течение всего периода эксплуатации.

По конструктивному решению ствола стальные опоры могут быть отнесены к трем основным схемам — башенным (одно- или многостоечным), портальным или вантовым, по способу закрепления на фундаментах — к свободно стоящим опорам и опорам на оттяжках, по способу соединения элементов разделяются на сварные и болтовые. Также стальные опоры делятся на опоры гибкой конструкции и опоры жёсткой конструкции.

Металлические опоры изготавливаются как из стального уголкового проката (применяется равнобокий уголок), так из гнутого стального профиля постоянного и переменного сечения (это сочетает в себе преимущества конструкций стальных многогранных опор ЛЭП и стальных решетчатых опор башенного типа), кроме того высокие переходные опоры могут быть изготовлены из стальных труб.

В СНГ насчитывается несколько основных центров производства стальных конструкций опор ЛЭП — центральный, уральский и сибирский.

Западная Европа

В Западной Европе существует энергообъединение UCPTE, включающее 12 стран, к которому теперь подключены и страны Восточной Европы. Страны Северной Европы создали энергообъединение Nordel System, включающее Швецию, Норвегию, Финляндию и Данию. Энергосистема Англин работает параллельно с UCPTE через подводную линию электропередачи постоянного тока. Подобные линии электропередачи связывают также энергосистемы Швеции, Дании и Германии с энергосистемами Швеции и Финляндии. Россия связана с Nordel System через вставку постоянного тока в г. Выборг с мощностью 1420 МВт. Предполагается сооружение подводной линии постоянного тока Великобритания — Норвегия протяженностью 724 км с пропускной способностью 800 МВт.
Основными системообразующими линиями переменного тока в странах Западной Европы, входящих в UCPTE, являются линии напряжением 380-420 кВ. Линии 230 кВ и линии 110-150 кВ выполняют функции распределительных сетей. Напряжения 500 и 750 кВ в Западной Европе не используются, однако во Франции в связи с ростом нагрузок разработан проект сооружения линий напряжением 750 кВ. При этом предполагается использовать вновь сооруженные линии 380 кВ с двумя проводами в фазе на двухцепных опорах для подвески одной цепи 750 кВ с теми же проводами.

Воздушные линии

Согласно устоявшемуся определению, воздушная линия электропередач — это устройство, предназначенное для передачи или распределение электроэнергии по проводам, находящимся в воздухе. Кабеля этой сети закреплены на опорах с помощью кронштейнов, изоляторов и арматуры. Отдельные участки воздушных линий (ВЛ) могут проходить по мостам или путепроводам. Состоят такие конструкции из следующих элементов:

  • Провода. Прочные изолированные кабеля, изготовленные из меди, стали, алюминия или их сплавов-проводников. Могут состоять из нескольких жил. Отличаются друг от друга параметрами сечения, бывают изолированными и неизолированными. Провода для ВЛ обязательно должны быть прочными и устойчивыми к механическим воздействиям.
  • Опоры. Изготавливают из металла, железобетонных блоков, дерева или композитных материалов. Обеспечивают необходимое расстояние между проводами и землёй. Состоят из фундамента, стойки, подкосов и растяжек. Особенности строения конструкций зависят от предназначения (некоторые из них перенаправляют ток, замыкают электросеть, служат в качестве проводников и так далее). Высота самых больших опор может достигать до 300 метров. Их стараются максимально адаптировать под местность, учитывая все особенности ландшафта.
  • Траверсы. Особые элементы арматуры, задача которых — закрепить провода так, чтобы обеспечить соблюдение нужного расстояния между разноимёнными фазами. Бывают разных форм и размеров — всего насчитывается около 20 разновидностей весом от 10 до 50 кг. Определить тип можно по маркировке. Поверхность изделий окрашена или оцинкована.
  • Изоляторы. Нужны для обеспечения надёжного и безопасного крепления проводов. Должны быть прочными и теплостойкими. Различаются по назначению и способу крепления к траверсам — точную модель можно узнать, посмотрев на маркировку. Изготавливаются из изолирующих материалов, таких как фарфор, стекло и различные полимеры.
  • Другая арматура. К ней относятся зажимы, подвесы, крепёжный устройства, планки, распорки прочие детали. Они могут использоваться уменьшения вибрации линии, предотвращения изломов и каких-либо других целей.
  • Изоляционные и защитные механизмы. Среди них можно выделить гирлянды изоляторов, заземляющие контуры, молниеотводы, вентильные разрядники, гасители вибрации и прочие структуры.

Согласно действующему регламенту, все ВЛ должны проходить техобслуживание раз в полгода и каждый год осматриваться электриками и инженерами. Иногда проводятся также внеочередные проверки сети — это происходит в связи с пожарами, наводнениями, сильными похолоданиями и прочими природными и техногенными авариями, а также после аварийного выключения. Во время осмотров происходит устранение таких проблем:

  • наличие на проводах посторонних предметов;
  • обрывы, перегорания или другие повреждения отдельных проводков;
  • отклонения в регулировке стрел провеса на более чем 5% от проектных;
  • механические повреждения или перекрытие изоляторов, разрядников, гирлянд и прочих функциональных элементов;
  • поломки опор.

Кроме того, рабочие обязаны следить за соблюдением правил, относящихся к охранной зоне объекта. У обычных ЛЭП она ограничивается 2 метрами вокруг сооружения, но у высоковольтных линий может достигать 10—55. В охранной зоне запрещается высаживать деревья и кустарники, выбрасывать мусор, проводить земляные работы и возводить любые сооружения, ограничивающие доступ к ВЛ. Любое строительство в этой области необходимо согласовывать с ответственными лицами обслуживающего предприятия.

Регуляторы температуры для батарей

Модный декор верхней одежды

Расстояние от ЛЭП и магнитное излучение

При прохождении по проводам электроны создают вокруг своего носителя электромагнитное поле. В зависимости от вида тока значение излучения постоянное или переменное. Непрерывное изменение значения тока с плюса на минус и наоборот заставляет поле менять свою величину в 2 раза чаще.

Вечером

Исследования по воздействию электромагнитных излучений на человека и живую природу начали проводить в конце 70 годов. По результатам обследования людей в разных странах ВОЗ – Всемирная организация здравоохранения определило максимально допустимые нормы излучений в герцах за единицу времени. В РФ и других странах были разработаны нормативные документы, запрещающие промышленное и гражданское строительство на близком расстоянии от ЛЭП.

Охранная зона

У людей, длительное время находящихся в зоне сильного поля, обнаруживали онкологические заболевания, сердечные болезни. Женщины страдали от бесплодия. Мужчин преследовали патологии мочеполовой системы. Появлялись общая слабость. Сокращалась продолжительность жизни.

Дешевая земля вблизи охранной зоны

Основываясь на нормах СанПиН, были разработаны правила застройки, и созданы под высоковольтными линиями санитарные зоны. Детские учреждения, находящиеся в опасном поясе, должны быть закрыты. Запрещено строительство жилых домов постоянного и временного проживания ближе, чем указана дистанция до высоковольтных линий в СанПиН 2971-84.

Продать дом, расположенный в опасной зоне, невозможно. Санитарные и противопожарные организации не утвердят такой документ. При застройке участков ИЖС надо учитывать расстояние до ЛЭП, расположенной поблизости.

Схема распространения электромагнитных волн

Насколько опасно излучение высоковольтных линий, демонстрируют цены на землю. Вблизи линий электропередачи стоимость участков низкая. По мере удаления повышается каждые 50 м. Соблазняться дешевизной не стоит. Надо подумать о здоровье своей семьи.

Разнообразие фактур

Порядок установления границ охраняемой зоны ЛЭП

Разрешение сетевой организации на осуществление деятельности

При необходимости проведения работ на охранной зоне, проходящей через частный участок ЛЭП, собственнику данной земли необходимо обратиться с письменным заявлением в энергоснабжающую (сетевую) организацию за 15 рабочих дней до начала работ, на которые запрашивается согласование.

Сетевая компания, рассмотрев заявление в течение двух дней, даст заявителю письменный ответ о согласовании или отказе проведения работ в охранной зоне на территории его участка.

Согласование или отказ высылается заявителю посредством факсимильной связи, электронной почты или заказным письмом.

Важно! Строить или производить другие работы на охранной территории ЛЭП без получения согласования от сетевой организации запрещено

Использование сетевой организацией земельного участка в охранной зоне ЛЭП

Порядок использования земельного участка охранной территории ЛЭП сетевой организацией определяется Постановлением Правительства № 160, нормативными документами, строительными нормами и правилами.

Последствия строительства в охранной зоне без решения о согласовании

При строительстве на охранной зоне без разрешения со стороны энергоснабжающей организации собственника ЛЭП виновное лицо (юридическое или физическое) будет привлечено к административной ответственности. При этом виновная сторона должна также произвести снос незаконной постройки.

Как согласовать постройки в охранной зоне

Для того чтобы в охранной зоне ЛЭП, проходящей по частному участку, построить не капитальное здание необходимо:

  • Подать письменное заявление в сетевую компанию, приложить к заявлению копию проектной документации на постройку. Последний срок подачи данной документации должен быть не позднее, чем за 15 рабочих дней до начала строительства.
  • Если в соответствии с законодательством возводимое строение не требует составления проектной документации, заявителю необходимо указать размеры и характеристики постройки.

В том случае, если до получения согласования заявитель внес в конструкцию постройки изменение (даже если в результате которого она стала больше всего на один квадратный метр), он должен оповестить об этом письменно сетевую организацию.

Работа крана в охранной зоне ЛЭП

Работа крана на данной территории производится с обязательной выдачей крановщику наряда допуска, с назначением ответственного лица, отвечающего за безопасность производимых работ. При работе под не обесточенными проводами минимальное расстояние от верхней точки стрелы крана в рабочем положении должно быть не менее 1,0 метра. При отклонении от данной нормы возможен воздушный пробой.

Работающий на ремонте ЛЭП кран

При расстоянии от груза или приведенной в рабочее положение стрелы крана до проводов линии более 30 метров наряд допуск не выдается.

Ответственность физических и юридических лиц

Ответственность за соблюдение правил использования охранных территорий линий электропередач, кабельных линий связи, находящихся на землях общего пользования, несут юридические лица, сетевые организации. Если линия электропередач проходит по территории предприятия, государственного учреждения, то ответственность за использование охранной зоны ЛЭП несут его руководитель и главный энергетик.

В случае прохождения линии электропередач по приусадебному участку ответственность за соблюдение правил использования охранной территории несет физическое лицо, которому принадлежит данная земля.

Размер штрафов за нарушение правил использования охранных земель по статье 9.8 КоАП РФ составляет от 500-2000 рублей (для физических и должностных лиц) до 10000-20000 рублей (для юридических лиц).

Электрический ток – опасное явление, поэтому, независимо от того, находится человек на охранной зоне лэп 0,4 или 10 кв, ему необходимо помнить и соблюдать минимальные правила поведения на данной территории. Особенно тщательно должен знать данные правила каждый собственник земельного участка, по которому проходят воздушные и подземные электрические коммуникации – их нарушение может привести как к штрафу, так и более плачевным последствиям для жизни и здоровья.

Приборы контроля зарядного режима

Уход

С чем следует определиться перед покраской?

Почему бьёт током

Чтобы разобраться для чего нужно заземление, для начала разберёмся в каких случаях и почему нас бьет током. Главное, что нужно для протекания электрического тока – это разность потенциалов. Это значит, что если вы стоите на полу и возьметесь за оголенный провод или другую токоведущую часть руками – то ток через ваше тело и пол стечёт в землю. Переменный ток силой всего в 50 мА уже является опасным для человека. А если вы обеими руками возьметесь за токоведущую часть и повисните на ней не касаясь земли, то скорее всего ничего не произойдёт, проверять это, конечно не стоит.

Наибольшее сопротивление заземляющих устройств опор ВЛ.

Поэтому птиц не бьет током на проводах. Но вернёмся к разговору о заземлении. Как мы уже сказали, корпуса электроприборов заземляют. Для чего это нужно? Проводка и другие узлы оборудования, такие как электродвигатели, ТЭНы и прочее в нормальном состоянии не имеют контактов фазы с корпусом прибора, металлорукавом или бронёй кабеля. Но в случае неполадок фаза может оказаться на корпусе. Это может произойти при повреждении изоляции обмоток двигателей и трансформаторов, пробоя диэлектрического слоя ТЭНов, повреждения изоляции соединительных проводов внутри прибора и кабельных линий.

Глубина заземления.

В результате на корпусе окажется опасный потенциал, простым языком: корпус окажется “под фазой”. Когда вы коснетесь его стоя босиком на плитке, бетонном и даже деревянном полу – вас ударит током. В худшем случае, это может привести к смерти. Чаще всего такая ситуация возникает в результате частичного выхода из строя ТЭНов стиральных машин, водонагревательных баков, проточных нагревателей. А особенно ярко такое ощущается при одновременном касании стиральной машины и водопроводных и отопительных труб, или в случае с водонагревательным баком, когда вы принимаете душ или ванную вас, бьёт током. Последняя проблема решается организацией системы уравнивания потенциалов (заземлением ванны и других металлических частей водопровода).

Если корпус поврежденного прибора заземлён – опасное напряжение стечет на землю и (или) сработает защитный прибор – устройство защитного отключения (УЗО) или автоматический выключатель дифференциального тока (дифавтомат).

Если корпус занулён – сработает обычный автомат, так как это будет коротким замыканием на корпус (ноль в данном случае). Дифавтоматы и УЗО определяют утечку тока путём сравнения токов фазного и нулевого провода – если ток в фазе больше чем в нуле, значит ток втекает в землю, через заземляющий провод или через тело человека. Такие приборы срабатывают при дифференциальном токе (разнице токов) обычно в 10 мА и более.

Обобщение по теме

Основные элементы воздушных линий электропередач

К элементам воздушной линии относятся:

  • кабель (это проводник, по которому передается электричество);
  • траверсы (предотвращают соприкосновение проводов с другими элементами опорной конструкции);
  • изоляторы;
  • опоры;
  • фундамент;
  • заземление;
  • молниеотводчики;
  • разрядники.

Каждый из перечисленных устройств незаменим. Элементы воздушной линии выполняют определенные функции, которые увеличивают безопасность и надежность системы.

В некоторых случаях линия может состоять из оптоволоконных проводников. Для таких устройств применяется специальное оборудование. Это позволяет прикрепить к соответствующим опорам высокочастотные проводники.

ТОП 13 лучших шнековых соковыжималок в 2020 году

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector