Определение доз облучения от гамма-излучающих радионуклидов
Содержание:
- Допустимые и смертельные дозы для человека
- Нанесение краски на изделие
- Когда развивается лучевая болезнь
- Измерение уровня облучения радиацией
- Эквивалентная доза (биологическая доза)
- Двусторонняя изоляция
- Поглощенная доза в биологии
- Эквивалентная доза
- Виды доз радиации и что такое мощность эквивалентной дозы
- Зиверт
- Что такое естественная радиоактивность материалов
- 42.* Категории облучаемых лиц и нормирование ионизирующих излучений. Методы защиты. Итд
- Измерение ионизирующих излучений
- Как измеряется радиация
- Что такое допустимые дозы облучения и когда они появились?
- Солнечная постоянная
- Материал изготовления
- Поглощённая доза
Допустимые и смертельные дозы для человека
См. также: НРБ-99
Миллизиверт (мЗв) часто используется как мера дозы при медицинских диагностических процедурах (рентгеноскопия, рентгеновская компьютерная томография и т. п.).
Согласно постановлению главного государственного санитарного врача России за № 11 от 21 апреля 2006 г. «Об ограничении облучения населения при проведении рентгенорадиологических медицинских исследований», п. 3.2, необходимо «обеспечить соблюдение годовой эффективной дозы 1 мЗв при проведении профилактических медицинских рентгенологических исследований, в том числе при проведении диспансеризации». Среднемировая доза облучения от рентгенологических исследований, накопленная на душу населения за год, равна 0,4 мЗв, однако в странах с высоким уровнем доступа к медобслуживанию (более одного врача на 1000 человек населения) этот показатель растёт до 1,2 мЗв. Облучение от других техногенных источников значительно меньше: 0,005 мЗв от радионуклидов, оставшихся от атмосферных ядерных испытаний, 0,002 мЗв от Чернобыльской катастрофы, 0,0002 мЗв от ядерной энергетики.
Среднемировая доза облучения от естественных источников, накопленная на душу населения за год, равна 2,4 мЗв, с разбросом от 1 до 10 мЗв. Основные компоненты:
- 0,4 мЗв от космических лучей (от 0,3 до 1,0 мЗв, в зависимости от высоты над уровнем моря);
- 0,5 мЗв от внешнего гамма-излучения (от 0,3 до 0,6 мЗв, в зависимости от радионуклидного состава окружения — почвы, стройматериалов и т. п.);
- 1,2 мЗв внутреннего облучения от ингалируемых атмосферных радионуклидов, главным образом радона (от 0,2 до 10 мЗв, в зависимости от местной концентрации радона в воздухе);
- 0,3 мЗв внутреннего облучения от инкорпорированных радионуклидов (от 0,2 до 0,8 мЗв, в зависимости от радионуклидного состава пищевых продуктов и воды).
При однократном равномерном облучении всего тела и неоказании специализированной медицинской помощи смерть в результате острой лучевой болезни наступает в 50 % случаев:
- при дозе порядка 3—5 Гр из-за повреждения костного мозга в течение 30—60 суток;
- 10 ± 5 Гр из-за повреждения желудочно-кишечного тракта и лёгких в течение 10—20 суток;
- > 15 Гр из-за повреждения нервной системы в течение 1—5 суток.
Нанесение краски на изделие
Когда развивается лучевая болезнь
Следствием воздействия критической дозы радиации на человека становится развитие лучевой болезни. Она поражает практически все системы организма. В зависимости от дозы излучения может поддаваться лечению или приводить к летальному исходу.
Согласно последним исследованиям, для появления лучевой болезни опасная доза радиации в год составляет 1,5 Зв. Предел допустимой дозы однократного облучения – 0,5 Зв. После этой отметки начинают проявляться признаки поражения.
Выделяют следующие формы лучевой болезни:
- Лучевая травма. Появляется, если дозировка разового излучения не превышала 1 Зв.
- Костномозговая форма. Опасные нормы – от 1 до 6 Зв. В половине случаев такая форма болезни приводит к летальному исходу.
- Желудочно-кишечная форма наблюдается при дозировке излучения от 10 до 20 Зв. Сопровождается внутренними кровотечениями, лихорадочным состоянием, развитием инфекционных поражений.
- Сосудистая форма. Развивается после облучения в пределах от 20 до 80 Зв. Происходят тяжелые гемодинамические нарушения.
- Церебральная форма. Наблюдается при облучении свыше 80 Зв. Происходит мгновенный отек мозга и смерть пострадавшего.
В некоторых случаях лучевая болезнь может перерастать в хроническую форму. Период ее формирования может занимать до трех лет. После этого происходит восстановление организма, которое длится еще три года. При правильной терапии результатом становится излечение. Но в некоторых случаях спасти пациента не удается.
Измерение уровня облучения радиацией
Человек испытывает на себе влияние излучения повсеместно. Радиоактивная доза в определенном количестве присутствует в организме всегда. Когда норма излучения в организме превышена во много раз, может наступить смерть.
Уровень радиации – это максимально допустимая дозировка фонового уровня ионизирующего излучения (измеряется в микрозивертах). Допустимый уровень радиации в закрытом помещении составляет 25 мкР/ч. Единица излучения радиации – микрозиверты в час. Вероятность развития рака резко повышается, если человек облучился дозой радиации свыше 11.42 МкЗв/час. Более половины людей, облучившихся дозой свыше 570.77 МкЗв за один раз, умирает за 3-4 недели. Предельно допустимый уровень излучения от источников естественного происхождения считается нормальным в пределах до 0,57 мкЗв/час. Нормальный радиационный фон, исключая влияние радона, составляет 0,07 мк/час.
Особую опасность излучение представляет для лиц, чья профессиональная деятельность предполагает постоянное столкновение с облучением. Мероприятия по предупреждению облучения среди медперсонала сводятся к установлению допустимого предела излучения.
Предельно допустимая концентрация (ПДК) радиоактивного излучения рассчитывается исходя из данных о виде и периоде распада ионизирующих частиц.
Если человек регулярно соприкасается с радиоактивными элементами, ему необходимо знать о том, как себя защитить. Разработаны и внедрены в практику допустимые уровни загрязнения одежды и средств защиты после дезинфекции. Максимально допустимый уровень загрязнения отражен в таблице ниже.
Объект загрязнения | Число частиц в 1 минуту | |||
Альфа-излучение | Бета-излучение | |||
До очистки | После очистки | До очистки | После очистки | |
Руки | 75 | фон | 5000 | фон |
Белье и полотенца | 75 | фон | 5000 | фон |
Спецодежда из хлопчатобумажной ткани | 500 | 100 | 25000 | 5000 |
Одежда из пленки | 500 | 200 | 25000 | 10000 |
Обувь | 500 | 200 | 25000 |
Существует средняя суточная норма для человека. Она равна 0,0027 млЗв / в сутки.
Эквивалентная доза (биологическая доза)
Основная статья: Эквивалентная доза
Изучение отдельных последствий облучения живых тканей показало, что при одинаковых поглощённых дозах различные виды радиации производят неодинаковое биологическое воздействие на организм. Обусловлено это тем, что более тяжёлая частица (например, протон) производит на единице длины пути в ткани больше ионов, чем лёгкая (например, электрон). При одной и той же поглощённой дозе радиобиологический разрушительный эффект тем выше, чем плотнее ионизация, создаваемая излучением. Чтобы учесть этот эффект, введено понятие эквивалентной дозы. Эквивалентная доза рассчитывается путём умножения значения поглощённой дозы на специальный коэффициент — взвешивающий коэффициент излучения, учитывающий относительную биологическую эффективность различных видов радиации.
Единицей измерения эквивалентной дозы в СИ является зиверт (Зв). Величина 1 Зв равна эквивалентной дозе любого вида излучения, поглощённой в 1 кг биологической ткани и создающей такой же биологический эффект, как и поглощённая доза в 1 Гр фотонного излучения. Внесистемной единицей измерения эквивалентной дозы является бэр (до 1954 года — биологический эквивалент рентгена, после 1954 года — биологический эквивалент рада). 1 Зв = 100 бэр.
Двусторонняя изоляция
Иногда необходимо утепление лоджии с двух сторон, например, на парапетах. Проблема в том, что сделать нормальный утеплительный слой с наружной стороны не всегда представляется возможным – слишком трудоемкая работа. В основном двойную изоляцию для лоджии применяют, когда хотят создать слой нужной толщины без потери полезного пространства помещения.
Не так важно, является утепляющий слой неразрывным или прерывается по толщине. Главное, чтобы с внутренней части располагалась парозащитная прослойка. Экономия площади лоджии может быть рассчитана, исходя из того, что изоляция перегородки и бетонной плиты равна 5 см, а наружной части – 10 см
Экономия площади лоджии может быть рассчитана, исходя из того, что изоляция перегородки и бетонной плиты равна 5 см, а наружной части – 10 см.
Технология утепления лоджии в качестве изолятора предусматривает как пенопласт, так и плиты, изготовленные из каменной ваты. Толщина подобных изделий составляет 5 см. Изделия монтируются в каркас пристройки, который, в свою очередь, набивается по парапету. Далее утеплитель защищается пароизоляцией и обшивается отделочным материалом.
Поглощенная доза в биологии
Искусственное облучение тканей животного и растительного происхождения наглядно продемонстрировало, что разные типы радиации, находясь в одинаковой поглощенной дозе, могут по-разному, влиять на организм и все биологические и химические процессы, происходящие в нем. Это вызвано разницей создаваемого количества ионов более легкими и тяжелыми частицами. За один и тот же путь вдоль ткани протон может создать ионов больше, чем электрон. Чем плотнее собираются частицы в результате ионизации, тем сильнее будет разрушительное воздействие излучение на организм, в условиях одинаковой поглощенной дозы. Именно в соответствии с этим явлением, разности в силе воздействия различных видов излучения на ткани, было введено в использование обозначение эквивалентной дозы излучения. Эквивалентная доза поглощенного излучения – это данные о полученном организмом излучении, рассчитанные путем перемножения показателя поглощенной дозы и особого коэффициента, который называют относительным биологическим коэффициентом эффективности (ОБЭ). Но также он часто именуется как коэффициент качества.
Единицы поглощенной дозы излучения эквивалентного типа измеряются в СИ, а именно в зивертах (Зв). Один Зв равен соответствующей дозе какого-либо излучения, которое поглощается одним килограммом ткани биологического происхождения и вызывает эффект равный воздействию 1 Гр излучения фотонного типа. Бэр – используют в качестве внесистемного измерительного показателя биологической (эквивалентной) поглощенной дозы. 1 Зв соответствует ста бэрам.
Эквивалентная доза
Установлено,
что при облучении одной и той же энергией
биологической ткани человека (то есть
при получении одной и той же дозы), но
различными видами лучей последствия
для здоровья будут разными. Например,
при облучении альфа-частицами тела
человека вероятность заболеть раком
значительно выше, чем при облучении
бета-частицами или гамма-лучами. Поэтому
для биологической ткани была введена
характеристика — эквивалентная доза.
Эквивалентная
доза (HTR)
— поглощенная доза в органе или ткани,
умноженная на соответствующий коэффициент
качества излучения WR
данного вида излучения R.
Введена
для оценки последствий облучения
биологической ткани малыми дозами
(дозами, не превышающими 5 предельно
допустимых доз при облучении всего тела
человека), то есть 250 мЗв/год. Ее нельзя
использовать для оценки последствий
облучения большими дозами.
Доза
эквивалентная равна:
HT.R
= DT.R
· WR,(8)
где
DT.R
— поглощенная доза биологической тканью
излучением R;
WR
— весовой множитель (коэффициент качества)
излучения R
(альфа-частиц, бета-частиц, гамма-квантов
и др.), учитывающий относительную
эффективность различных видов излучения
в индуцировании биологических эффектов
(табл. 1). Этот множитель зависит от многих
факторов, в частности от величины
линейной передачи энергии, от плотности
ионизации вдоль трека ионизирующей
частицы и т.д.
Формула
(8) справедлива для оценки доз как
внешнего, так и внутреннего облучения
только отдельных органов и тканей или
равномерного облучения всего тела
человека.
При
воздействии различных видов излучений
одновременно с различными взвешивающими
коэффициентами эквивалентная доза
определяется как сумма эквивалентных
доз для всех этих видов излучения R:
HT
= Σ
HT.R(9)
Установлено,
что при одной и той же поглощенной дозе
биологический эффект зависит от вида
ионизирующих излучений и плотности
потока излучения.
Примечание.
При
использовании формулы (8) средний
коэффициент качества принимают в данном
объеме биологической ткани стандартного
состава: 10,1% водорода, 11,1% углерода, 2,6 %
азота, 76,2 % кислорода.
Единица
измерения эквивалентной дозы в системе
СИ — Зиверт
(Зв).
Зиверт
— единица
эквивалентной дозы излучения любой
природы в биологической ткани, которая
создает такой же биологический эффект,
как и поглощенная доза в 1 Гр образцового
рентгеновского излучения с энергией
фотонов 200 кэВ, Используются также
дробные единицы — мкЗв, мЗв. Существует
и внесистемная единица — бэр
(биологический
эквивалент рада), которая постепенно
изымается из пользования.
1
Зв = 100
бэр.
Используются
также дробные единицы — мбэр, мкбэр.
Таблица
1. Коэффициенты качества излучения
Вид |
Коэффициенты |
Фотоны |
1 |
Электроны |
1 |
Нейтроны |
|
< |
5 |
от |
10 |
> |
20 |
> |
10 |
> |
5 |
Протоны |
5 |
Альфа-частицы, |
20 |
Примечание. |
Примечание.
Коэффициент
WR
учитывает зависимость неблагоприятных
биологических результатов облучения
в малых дозах от полной линейной передачи
энергии (ЛПЭ) излучения. В таблице 2
приведена зависимость весового
коэффициента качества WR
от ЛПЭ.
Таблица
2. Зависимость коэффициента качества
WR
от ЛПЭ
ЛПЭ |
нЖд/м |
≤0,56 |
1Д |
3,7 |
8,5 |
≥28 |
в |
кэВ/мкм |
≤3,5 |
7,0 |
23 |
63 |
≥175 |
WR |
1 |
2 |
5 |
10 |
20 |
Мощность
эквивалентной дозы —
отношение приращения эквивалентной
дозы dH
за время dt
к
этому интервалу времени:
Единицы
измерения мощности эквивалентной дозы
мЗв/с, мкЗв/с, бэр/с, мбэр/с и т.д.
Виды доз радиации и что такое мощность эквивалентной дозы
Понятие дозы введено для оценки степени воздействия ионизационного облучения на различные объекты. Чтобы определить интенсивность допустимых доз облучения ввели понятие мощности дозы.
- Экспозиционная доза. Количество положительных ионов рентгеновских и гамма лучей в определённом объёме воздухе, принято называть экспозиционной дозой. Системной единицей измерений является кулон деленный на килограмм (Кл/Г), а не системной единицей Рентген (Р). 1 Кл/Г = 3876 Р.
- Поглощённая доза. Количество полученной энергии радиоактивного излучения на единицу массы облучаемого вещества называют поглощённой дозой. Системной единицей измерения является в Грей (Гр), а не системной Рад. 1 Гр = 100 рад.
- Эквивалентная доза. Понятие эквивалентной дозы показывает поглощённую дозу ионизирующего излучения, скорректированную коэффициентом относительной биологической эффективности различных видов радиоактивных излучений. Системно единицей измерения является Зиверт (Зв), а не системной Бэр (бэр). 1 Зв = 100 бэр.
- Эффективная доза. Различные ткани организма имеют разную чувствительность к облучению. Поэтому для расчёта эффективной дозы добавили коэффициент радиационной опасности. Измеряется также как и эквивалентная доза в Зивертах (Зв).
- Мощность эквивалентной дозы. Доза облучения, полученная организмом в определённый отрезок времени (например, в течение часа), называется мощностью дозы. Мощность рассчитывается как отношение дозы ко времени воздействия и измеряется в Рентген в час, Зиверт в час и Грей в час. Бытовые дозиметры обычно измеряют мощность эквивалентной дозы (микроЗиверт в час) или мощность экспозиционной дозы (микроРентген в час). Соотношение запомнить несложно — один Зиверт это сто Рентген.
Допустимая доза облучения или безопасная мощность дозы
Допустимые дозы облучения (уровень мощности естественного фона) от 0,05 мкЗв/час до 0,5 мкЗв/час безвредны. Но при постоянном попадании в организм человека радона возрастает риск различных заболеваний, в том числе раком. Поэтому помещения необходимо проветривать. При строительстве дома или ремонте квартиры нужно проверять применяемые стройматериалы бытовым дозиметром или индикатором радиоактивности.
Человеческая деятельность увеличивает естественную радиоактивность природы. И это не только ядерное оружие или атомная промышленность. Обычное сжигание газа, нефти или каменного угля изменяет радиационный фон. Допустимые дозы облучения значительно превышены в районах нефтескважин. На грунте около скважин и на бурильном оборудовании откладываются небезопасные соли тория 232, радия 226 и калия 40. Поэтому отработанные трубы считаются радиоактивными отходами и должны утилизироваться специальным образом.
Смертельная доза облучения
Опасность получения смертельной дозы облучения в основном появляется при техногенных авариях или при неправильном хранении радиоактивных отходов. Смертельная доза радиации начинается с 6-7 Зв в час и более. Но даже в небольшой степени, но постоянно повышенный радиационный фон может вызвать мутацию клеток. Риск возникновения онкологических заболеваний можно снизить, используя бытовые дозиметры. Радионуклиды имеют свойство накапливаться. Поэтому следует регулярно проверять окружающий радиационный фон, строительные материалы, природные источники воды.
Зиверт
Единица измерения радиации зиверт используется для обозначения эффективной и эквивалентной доз излучения и также входит в систему СИ, как грей и беккерель. Используется в науке с 1978 года. Один зиверт равен энергии, которую поглотил килограмм ткани после воздействия одного грея гамма-лучей. Название свое единица получила в честь Рольфа Зиверта, ученого из Швеции.
Судя по определению, зиверты и греи равны, то есть эквивалентная и поглощенная дозы имеют одинаковые размеры. Но разница между ними все-таки есть. При определении эквивалентной дозы необходимо учитывать не только количество, но и другие свойства излучения, такие как длина волны, амплитуда и какие частицы ее представляют. Поэтому числовое значение поглощенной дозы умножают на коэффициент качества излучения.
Так, например, при всех прочих равных условиях поглощенный эффект альфа-частиц будет в двадцать раз сильнее, чем такая же доза гамма-излучения. Помимо этого, необходимо учитывать тканевой коэффициент, который показывает, как органы реагируют на излучение. Поэтому эквивалентная доза используется в радиобиологии, а эффективная – в гигиене труда (для нормирования воздействия излучения).
Что такое естественная радиоактивность материалов
Естественная радиация в природе существовала всегда. Один из ее источников – излучение земной коры. В ее толще залегают породы, из которых производят многочисленные строительные материалы. Многие из них до сих пор хранят следы радиоактивного прошлого нашей планеты.
К наиболее вредным строительным материалам причисляют:
- гранит
- кварцевый диорит
- графит
- туф
- пемзу
Все они выделяют достаточно большое количество радона, поэтому для внутренней отделки перечисленные материалы лучше не использовать. Кирпич, бетон и дерево в этом смысле считаются сравнительно безопасными. Причем радиоактивность силикатного кирпича ниже, чем красного.
Относительно невысока удельная активность радионуклидов у карбонатных горных пород – мрамора и известняка. Средним уровнем естественной радиоактивности отличаются песок и гравий. Уровень радиации стекловолокна, фосфогипса обычно находится в допустимых пределах, но ради собственной безопасности стоит проверять и их.
Распространенные заблуждения о радиоактивности некоторых стройматериалов
Радиоактивность древесины выше, чем кирпича. Это заблуждение появилось после того, как люди начали измерять уровни радиационного фона внутри домов, построенных из этих материалов. При этом самыми высокими оказались показатели, снятые в деревянных строениях. На самом деле причина этого в том, что большинство деревянных домов – малоэтажные, то есть комнаты там расположены близко к земле, которая считается основным естественным источником радона.
Бетон – опасный радиоактивный материал. Мнение о высокой радиоактивности бетона распространилось после серии статей о повышенном радиационном фоне в панельных домах. На самом деле это не так. Радиоактивность этого материала многократно ниже, чем у кирпича. К тому же, основная его часть обычно сконцентрирована в фундаменте дома. Еще один аргумент: на крупных предприятиях по производству бетона безопасность продукции контролируют, а в качестве сырья используют щебень, добытый из сертифицированных мест.
Но тем не менее опасность, связанная с радиоактивностью наполнителей для изготовления этого строительного материала существует. Поэтому, если вы замешиваете бетон самостоятельно, желательно проверить используемый для этого щебень и песок дозиметром. Это поможет убедиться в том, что данный материал можно использовать при строительстве жилых зданий. Проверка требуется в основном гранитному щебню, так как гравийный материал в зону риска практически не входит.
В чем опасность радиоактивных строительных материалов
Радиоактивность некоторых используемых в строительстве материалов может нанести вред здоровью. При распаде радионуклидов, входящих в их состав (радия-226, калия-40, тория-232), выделяется радиоактивный газ радон. Его объемная активность в воздухе непроветриваемых помещений (подвалов, подземных станций метро), бывает в 10 и более раз выше, чем в открытой атмосфере.
Радон выделяется в воздух в два этапа. Сначала он проникает из материала в поры элементов строительного объекта. Затем постепенно распространяется через микрощели и трещины. При этом часть его распадается и попадает в воздух помещения. Больше всего радона скапливается на первых этажах зданий.
Опасность радиоактивных строительных материалов в том, что исходящее от них излучение может значительно ухудшать экологию помещения. Вследствие этого людей беспокоят:
- головные боли,
- аллергия,
- плохое самочувствие.
Более того, поступая в легкие, радон распадается с выбросом альфа-частиц. Это может вызывать микроожоги тканей и их злокачественное перерождение.
Как проверить стройматериал на радиоактивность
Уровень природной радиоактивности строительных материалов ограничивается нормами радиационной безопасности (НРБ –99/2009). Этот нормативный документ устанавливает три класса стройматериалов с разной величиной эффективной удельной активности природных радионуклидов (Аэфф). Так, для строительства и ремонта жилых и общественных зданий допускается использовать материалы с Аэфф не более 370 Бк/кг.
Дозиметр поможет вам аргументированно отклонить даже выгодное предложение о покупке вредных строительных материалов, которые иногда поступает от недобросовестных продавцов и поставщиков. Кроме того, с этим прибором вы легко проверите свою квартиру, офис, производственное помещение на предмет радиационной безопасности.
42.* Категории облучаемых лиц и нормирование ионизирующих излучений. Методы защиты. Итд
Согласно
нормам радиац. безопасности (НРБ-76/78),
регламентированы 3
категории облучаемых лиц:
А — персонал, связанный с источником ИИ;
Б — персонал (ограниченная часть
населения), находящихся вблизи источника
ИИ; В — население района, края, области,
республики.
Группы
критических органов
(по мере уменьшения чувствительности):
1)все тело, половая сфера, красный костный
мозг; 2)мышцы, щитовидная железа, жировая
ткань и др. органы за исключением тех,
которые относятся к 1 и 3 группам; 3)кожный
покров, костная ткань, кисти, предплечья,
стопы.
Основные
дозовые пределы,
допустимые и контрольные уровни, которые
приводятся в НРБ — 76/78 установлены для
лиц категории А и Б. Нормы радиационной
безопасности для категории В не
установлены, а ограничение облучений
осуществляются регламентацией или
контролем радиоакт. объектов ОС.
А
дозовый предел
— ПДД – наиб. значение индивид. эквивал.
дозы за календарный год, которое при
равномерном воздействии в течении 50
лет не вызывает отклон. в сост. здоровья
обслуж. персонала, обнаруживаемые
современными методами исследования.
Б
дозовый предел
— ПД — основной дозовый предел, который
при равномерном облучении в течение 70
лет не вызывает отклонений у обслуж.
персонала, обнаруживаемые совр. методами
исследования.
Нормативный
документ
«Основные санитарные правила (ОСП
72/78) работы с источниками ионизирующих
излучений» включает: 1)Требования к
размещению установок с радиоакт.
веществами и источниками ИИ. 2)Треб. к
организации работ с ними. 3)Треб. к
поставке, учету и перевозке. 4)Треб. к
работе с закрытыми источниками. 5)Треб.
к отопл., вентиляции и пылегазоочистки
при работе с источниками. 6)Треб. к
водоснабжению и канализации. 7)Треб. к
сбору, удалению и обезвреж. отходов.
8)Треб. к содерж. и дезактивации раб.
помещений и оборудования. 9)Треб. по
индивид. защите и в личной гигиене.
10)Треб. к проведению радиационного
контроля. 11)Требования к предупреждению
радиац. аварий и ликвидаций их последствий.
42.*
Проектирование
защиты от внешнего ИИ, рассчитанные по
мощности экспозиционной дозы, коэф.
защиты равен 2.
Методы
защиты от ионизирующих излучений:
1)Метод
защиты количеством, т.е. использ.
источников с миним. выходом излучения,
сюда относится и герметизация.
2)Защита
временем (т.е. предусматривается такой
регламент проведения работ, при котором
доза, полученная за время выполнения
работ, не превысит предельно допустимую).
При этом обязательно проводится
дозиметрический контроль.
3)Экранирование
(свинец, бетон)
4)Защита
расстоянием.
Приборы
радиационного контроля
(измерение или контроль): 1)дозиметры
(измер. экспозиционную или поглощенную
дозу излучения, мощность этих доз);
2)радиометры (измеряют активность нуклида
в радиоактивном источнике); 3)спектрометры
(измеряют распределение энергии ИИ по
времени, массе и заряду элем. частиц);
4)сигнализаторы; 5)универсальные приборы
(дозиметры+другие); 6)устройство
детектирования.
Требования
к проведению радиационного контроля —
в ОСП 72/78.
Применяются
следующие методы
регистраций излучений:
1)ионизационный
(основан на измер. степени ионизации
среды);
2)сцинтилляционный
(основан на измерении интенсивности
световых вспышек, возникающих в
люминисцирующих веществах при прохождении
через них ИИ);
3)фотографический
(основан на измерении оптической
плотности почернения фотографической
пленки при действии ионизирующих
излучений);
4)химический
(основан на измерении изменений,
происходящих с веществом под воздействием
излучения: например, выделение газов
из соединений и т.п.);
5)калорометрические
методы (основаны на измерении количества
теплоты, выделенной в поглощающем
веществе).
Применяются
также полупроводниковые, фото и
термолюминесцентные детекторы
ионизирующих излучений. █
Измерение ионизирующих излучений
С открытием радия было обнаружено, что излучение радиоактивных веществ влияет на живые организмы и вызывает биологические эффекты, сходные с действием рентгеновского облучения. Появилось такое понятие, как доза ионизирующего излучения – величина, которая позволяет оценивать воздействие радиационного облучения на организмы и вещества. В зависимости от особенностей облучения, выделяют эквивалентную, поглощенную и экспозиционную дозы:
- Экспозиционная доза – показатель ионизации воздуха, возникающей под действием гамма- и рентгеновских лучей, определяется количеством образовавшихся ионов радионуклидов в 1 куб. см. воздуха при нормальных условиях. В системе СИ она измеряется в кулонах (Кл), но существует и внесистемная единица – рентген (Р). Один рентген – большая величина, поэтому удобнее на практике использовать ее миллионную (мкР) или тысячную (мР) доли. Между единицами экспозиционной дозы установлено следующее соотношения: 1 Р = 2, 58.10-4 Кл/кг.
- Поглощенная доза – энергия альфа-, бета- и гамма-излучения, поглощенная и накопленная единицей массы вещества. В международной системе СИ для нее введена следующая единица измерения – грей (Гр), хотя до сих пор в отдельных областях, например в радиационной гигиене и в радиобиологии широко используется внесистемная единица – рад (Р). Между этими величинами имеется такое соответствие: 1 Рад = 10-2 Гр.
- Эквивалентная доза – поглощенная доза ионизирующего излучения, учитывающая степень его воздействия на живую ткань. Поскольку одинаковые дозы альфа-, бета- или гамма-излучения оказывают разный биологический ущерб, введен так называемый КК –коэффициент качества. Для получения эквивалентной дозы необходимо поглощенную дозу, полученную от определенного вида излучения, умножить на этот коэффициент. Измеряется эквивалентная доза в берах (Бэр) и зивертах (Зв), обе эти единицы взаимозаменяемы, переводятся из одной в другую таким образом: 1 Зв = 100 Бэр (Рем).
В системе СИ используется зиверт – эквивалентная доза конкретного ионизирующего излучения, поглощенная одним килограммом биологической ткани. Для пересчета греев в зиверты следует учесть коэффициент относительной биологической активности (ОБЭ), который равен:
- для альфа-частиц – 10-20;
- для гамма- и бета-излучения – 1;
- для протонов – 5-10;
- для нейтронов со скоростью до 10 кэВ – 3-5;
- для нейтронов со скоростью больше 10 кэВ: 10-20;
- для тяжелых ядер – 20.
Бэр (биологический эквивалент рентгена) или рем (в английском языке rem – Roentgen Equivalent of Man) – внесистемная единица эквивалентной дозы. Поскольку альфа-излучение наносит больший ущерб, то для получения результата в ремах, необходимо измеренную радиоактивность в радах умножить на коэффициент, равный двадцати. При определении гамма- или бета-излучения перевод величин не требуется, поскольку ремы и рады равны друг другу.
Основные радиологические величины и единицы | |||
Величина | Внесистемные | Си | Соотношения между единицами |
Активность нуклида, А | Кюри (Ки, Ci) | Беккерель (Бк, Bq) | 1 Ки = 3.7·1010Бк 1 Бк = 1 расп/с 1 Бк=2.7·10-11Ки |
Экспозицион- ная доза, X |
Рентген (Р, R) | Кулон/кг (Кл/кг, C/kg) |
1 Р=2.58·10-4 Кл/кг 1 Кл/кг=3.88·103 Р |
Поглощенная доза, D | Рад (рад, rad) | Грей (Гр, Gy) | 1 Гр=1 Дж/кг |
Эквивалентная доза, Н | Бэр (бэр) | Зиверт (Зв, Sv) | 1 бэр=10-2 Зв 1 Зв=100 бэр |
Интегральная доза излучения | Рад-грамм (рад·г, rad·g) | Грей- кг (Гр·кг, Gy·kg) | 1 рад·г=10-5 Гр·кг 1 Гр·кг=105 рад·г |
Как измеряется радиация
Радиоактивность окружающего пространства напрямую влияет на состояние здоровья. Даже находясь у себя дома, человек может подвергаться негативному воздействию. Особенно опасны квартиры, в которых имеется посуда, изготовленная из кранового стекла, отделочные материалы с добавлением гранита или старая радиационная краска
При таких обстоятельствах важно периодически измерять радиационный фон. Выявить опасный фон помогут специальные приборы – радиометры или дозиметры
Для эксплуатации в жилом помещении используют дозиметр. При помощи радиометра легко можно определить фон продуктов питания.
Сегодня существуют специальные организации, которые предоставляют услуги по определению радиационного заражения. Специалисты помогут выявить и утилизировать источники фона.
Можно приобрести и домашний дозиметр. Но быть на 100% уверенным в показаниях такого прибора нельзя. При его использовании необходимо строго следовать инструкции и не допускать контакта устройства с исследуемыми объектами. Если уровни радиации в помещениях окажутся недопустимыми, следует обратиться за помощью к профессионалам как можно скорее.
Что такое допустимые дозы облучения и когда они появились?
Специалисты радиационной безопасности на основе данных о влиянии облучения на здоровье человека разработали предельно допустимые значения энергии, которые могут быть поглощены организмом без вреда. Предельно допустимые дозы (ПДД) указаны для разового или длительного облучения. При этом нормы радиационной безопасности учитывают характеристику лиц, подвергающихся действию радиационного фона.
Выделяют следующие категории:
- А – лица, работающие с источниками ионизирующего излучения. По ходу выполнения своих трудовых обязанностей подвергаются облучению.
- Б – население определенной зоны, работники, чьи обязанности не связаны с получением радиации.
- В – население страны.
Среди персонала различают две группы: работники контролируемой зоны (дозы облучения превышают 0.3 от годового ПДД) и сотрудники вне такой зоны (0.3 от ПДД не превышается). В пределах доз различают 4 типа критических органов, то есть тех, в чьих тканях наблюдается наибольшее количество разрушений в связи с ионизированным излучением. Учитывая перечисленные категории лиц среди населения и работников, а также критические органы, радиационная безопасность устанавливает ПДД.
Впервые пределы облучения появились в 1928 году. Величина годового поглощения радиационного фона составляла 600 миллизиверт (мЗв). Установлена она была для медицинских работников – рентгенологов. С изучением влияния ионизированного излучения на продолжительность и качество жизни ПДД ужесточились. Уже в 1956 году планка снизилась до 50 миллизиверт, а в 1996-м Международная комиссия по защите от радиации уменьшила ее до 20 мЗв. Стоит заметить, что при установлении ПДД в расчет не берут естественное поглощение ионизированной энергии.
Солнечная постоянная
Существует теория, что жизнь на нашей планете появилась благодаря солнечной радиации. Единицы измерения излучения от звезды – калории и ватты, деленные на единицу времени. Так было решено потому, что величина радиации от Солнца определяется по количеству тепла, которое получают объекты, и интенсивности, с которой оно поступает. До Земли доходит всего половина миллионной доли от общего количества выбрасываемой энергии.
Радиация от звезд распространяется в космосе со скоростью света и в нашу атмосферу попадет в виде лучей. Спектр этого излучения довольно широкий – от «белого шума», то есть радиоволн, до рентгеновских лучей. Частицы, которые тоже попадают вместе с излучением, – это протоны, но иногда могут быть и электроны (если выброс энергии был большим).
Излучение, получаемое от Солнца, является движущей силой всех живых процессов на планете. Количество получаемой нами энергии зависит от времени года, положения звезды над горизонтом и прозрачности атмосферы.
Материал изготовления
Поглощённая доза
Основная статья: Поглощённая доза
При расширении круга известных видов ионизирующего излучения и сфер его приложения, оказалось, что мера воздействия ионизирующего излучения на вещество не поддаётся простому определению из-за сложности и многообразности протекающих при этом процессов. Важным из них, дающим начало физико-химическим изменениям в облучаемом веществе и приводящим к определённому радиационному эффекту, является поглощение энергии ионизирующего излучения веществом. В результате этого возникло понятие поглощённая доза. Она показывает, какое количество энергии излучения поглощено в единице массы облучаемого вещества и определяется отношением поглощённой энергии ионизирующего излучения к массе поглощающего вещества.
За единицу измерения поглощённой дозы в системе СИ принят грей (Гр). 1 Гр — это такая доза, при которой массе 1 кг передаётся энергия ионизирующего излучения в 1 джоуль. Внесистемной единицей поглощённой дозы является рад. 1 Гр = 100 рад.